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OUTLINE

The present survey
What is quantitative x-ray diffraction?
How good is it?

What good is it?
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METHOD

Use <2 mm size fraction
Samples are micronized for 3 minutes
Internal standard (10% Zn0O) added to each sample

Dry powder in back-loading sample mounts for random
orientation

Use CuKa x-radiation



THE X-RAY DIFFRACTION TECHNIQUE

In use for about a century

Early use was to determine crystal structure of
compounds, including many minerals

But, once structures were determined for many
minerals, it has become a technique for mineral
identification (qualitative).

In recent decades quantitative analysis of complex
mixtures of minerals has become feasible.



Basics of X-ray Diffraction

Measures interatomic spacing using constructive interference of
an x-ray beam

The Bragg Equation
nA=2d sin®

1915 Nobel Prize in Physics

There is a unique combination of x-ray wave-length, angle of
incidence, and interatomic spacing at which x-rays emerge from a

crystal still in phase.

So, by using x-rays of known wavelength and measuring the
angle of incidence, the interatomic spacing can be calculated



A TYPICAL DIFFRACTOGRAM OF SOIL
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Sample contains nine identifiable minerals plus ZnO standard



QUANTITATIVE X-RAY DIFFRATION MINERALOGY

Rietveld Refinement Calculations

Developed by Hugo Rietveld, a Dutch physicist, in the
late 1960’s.

Deconstructs complex diffraction pattern into patterns
of individual component minerals.

Simultaneously adjusts the percentage of each mineral
to achieve the best least squares fit to observed

pattern.

Also adjusts for other variables such as preferred
orientation and peak shape.



A diffractogram of soil (top) and diffractograms
of eight component minerals
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HOW GOOD IS THIS TECHNIQUE?

The method is fraught with potential errors, largely
because of overlaps of diffraction peaks of minerals in
complex mixtures such as soils.

Rigorous QA/QC is necessary to qualify data as to the
degree of reproducibility and accuracy.

We run duplicate samples and standards at a rate of 1
each per 20 unknowns.
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DUPLICATE ANALYSES
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ISSUES WITH CLAYS AND MICA

Our analytical method, using randomly oriented dry powder
mounts, is far from optimal to derive specific information about
complex mixtures of clays typical of many soils.

Although more accurate characterization of clays can be done
using a variety of other techniques, they are not practical to apply
to 10,000 samples, at least at this stage of our study.

In addition, Rietveld calculations require information on the
crystal structure of minerals, which is not available for some
expandable and mixed layer clay minerals.

So, we have characterized clays and micas into three broad
categories based on the d-spacing of the basal layering: 1) 14-15
angstrom clays, 2) 10 angstrom clays, and 3) 7 angstrom clays.
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STANDARDS

Our simplest standard consists of 90% quartz and 10% zincite
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WHAT GOOD IS MINERALOGICAL DATA?

VALUE IN ITS OWN RIGHT

Carbonate content determines ability to neutralize
acidic conditions.

Clay content controls many interactions with trace
elements and other compounds

VALUABLE AS AN AID IN INTERPRETING GEOCHEMICAL
PATTERNS

Determine mineralogical residence of various elements

Calculate the effect of quartz dilution on element patterns



A FEW EXAMPLES

QUARTZ CONTENT OF C-HORIZON SOIL

Quartz %
mm 98
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TOTAL FELDSPAR IN C-HORIZON SOIL

Feldspar %
mm 58
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TOTAL CARBONATE MINERALS IN C-HORIZON

Total carbonate %
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TOTAL CLAY MINERALS IN C-HORIZON

Clay %
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MINERALOGIC RESIDENCE OF
TRACE ELEMENTS

LEAD CONCENTRATION IN C-HORIZON SOIL Lead is a common trace element in
potassium feldspar where it is

4, relatively immobile in many

¢ environments.

LEAD CONTENT OF C-HORIZON SOIL NORMALIZED
BY POTASSIUM FELDSPAR CONTENT

Normalizing lead by potassium
feldspar highlights soils where
significant amounts of lead
reside in other minerals from
which it may be more easily
mobilized
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QUARTZ DILUTION EFFECT

Comparison of quartz content, with inverted color ramp,
and potassium content of C-horizon soil

QUARTZ CONTENT OF C-HORIZON SOIL

6

Potassium is just one of many
Elements whose distribution
mimics the quartz content of the
soil.

POTASSIUM CONTENT OF
323 C-HORIZON SOIL
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QUARTZ DILUTION EFFECT

Comparison of potassium content of whole soil
sample vs. the quartz-free fraction
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CONCLUSIONS

Modern techniques for quantitative x-ray diffraction
allow practical development of large data sets for
soils and other mineral mixtures.

Such data are important in their own right for issues
such as acid buffering capacity of soils and soil
behavior controlled by clay content.

When combined with soil chemistry, quantitative soil
mineralogy allows a more thorough understanding of
the causes and consequences of variations in soil
chemistry.



