

Emerging Interest in GC-Triple Quadrupole Mass Spectrometry for Environmental Analysis

National Environmental Monitoring Conference August 18, 2011 Jason Cole, Product Manager GC/MS

• What are the analytical strengths of GC/QqQ?

- Example applications demonstrating strengths
 - Organotins in water
 - PAH in rubber
 - Dioxins in food and feed

Triple Quadrupole MS – Principle of Operation

Quantitation of target compounds in matrix samples

Analytical Strengths of Triple Quadrupole in SRM

Analytical Strength	Analytical Reason	Application Benefit
High sensitivity	SRM has a high duty cycle	Lowered LOQ's/LOD's
High selectivity	MS/MS eliminates most isobaric interferants	Lowered LOQ's/LOD's Less sample prep High speed of analysis
High specificity	MS/MS eliminates most isobaric interferants	Less false positives

SRM process offers opportunity for lowered LOQs, reduced sample prep, higher speed of analysis, and less risk of false positives

Application Challenge and Approach

- Lowered limits set by EU Water Directive
 - Maximum allowable concentration 1.5 ng/L (ppt)
 - Maximum annual average 0.2 ng/L (ppt)
- Approach
 - Extraction
 - 400 ml of water at pH5
 - Extraction with pentane
 - Evaporated to 400 µl
 - Derivatized with sodium tetra-ethyl borate
 - 3 µL injected into TSQ Quantum XLS, GC triple quadrupole

Customer Limits of Detection Using SIM

Compound	LOD Using SIM
Monobutvltin	10 ng/L
	E ng/l
Dibutyitin	J Ng/L
Tributyltin	5 ng/L
Triphenyltin	1 ng/L

Greater than order of magnitude improvement in detection limits needed

Organotins at 0.5 ng/L

The Case of the Problem Sample

- Sample matrix: rubber
- Looking for PAH's that come from extender oils
- Full sample prep applied to sample

Comparison of Fullscan and SRM

Pyrene in rubber by fullscan

Pyrene in rubber by SRM

Pyrene in Standard by SRM

Thermo Fisher

Compounds Detected – SRM vs Fullscan

Compound	SRM*	Fullscan
Naphthalene	Х	Х
Acenaphthylene	Х	
Acenaphthene	Х	
Anthracene	Х	
Phenanthrene	Х	
Pyrene	Х	

* All compounds confirmed with retention times and ion ratios (2)

Benefits of Triple Quad for the Analysis

- Less sample prep required
- Ability to measure "worst case" samples
- Greater confidence in confirmation

Why GC-Triple Quad for Dioxins Analysis?

Screening

- Higher quality of screening results
 - TEQs can be calculated from results of screen [1]
 - Congener specific Results depend on PCDD/F and PCB congener profile
- Improvement of screening sensitivity for false negative results below 1%
 - Could result in a improved specificity, thus affecting the overall cost. [2]

Confirmation

- Lower upfront cost
- More versitile approach
- References:
 - [1] Kotz, Malisch 2010, Dioxon Conference
 - [2] Fochi, Brambilla 2008

Commission Regulation (EC) No. 1881/2006 Commission Directive 2006/13/EC)

	Maximum levels WHO-PCDD/F-TEQ
Food (Meat, liver, eggs, milk products, fats and oils, fish)	0.75 – 6 pg/g fat 4 pg/g wet weight (fish)
Feed (Compound feed, premixtures, additives)	0.75 – 6 ng/kg product (12 % moisture content)

TSQ Quantum XLS - TCDD in Buffalo Milk Samples

Blank (GC-MS/MS) Buffalo Milk (GC-MS/MS) Buffalo Milk (GC-HRMS) 0.17 pg/g fat RT: 21.05 RT: 21.09 AA: 18154 100 100 E AA: 187056 100-50 2,3,7,8-TCDD 50-50-Relative Abundance Relative Abundance RT: 21.05 RT: 21.08 AA: 225637 Relative Abundance AA: 14169 100_ 50-RT: 20.53 RT: 20.54 RT: 20.56 AA: 11080629 AA: 9837760 100_ 100_ AA: 2978387 100_ RT: 21.05 RT: 21.02 RT: 21.07 50-AA: 4446744 AA: 3929206 50 AA: 1245499 50-ISTD RT: 20.53 RT: 20.54 RT: 20.56 AA: 10309114 Labeled AA: 9256888 100-100 50 AA: 2791975 100-RT: 21.02 RT: 21.05 RT: 21.07 50-AA: 4246893 AA: 3741946 50-AA: 1164346 21 20.5 21.0 21 20.5 21.0 20.0 21 20.0 20.5 21.0 20.0

> Thermo Fisher SCIENTIFIC

Buffalo Milk Sample, HxCDD GC-MS/MS (5 µl injection PTV solv. split) → GC-HRMS 1/10 concentration

Thermo Fisher SCIENTIFIC

TSQ Quantum XLS vs. GC-HRMS of Certified Material

TSQ Quantum XLS Ultra – Food Dioxin Screening

- Courtesy Alexander Kotz, EURL Freiburg, Germany
 - Presented at the 6th POPs Users Meeting, Niagara-on-the-Lake, Canada, Apr 28/29, 2011

Conclusion From Webinar by Dr. Kotz

- GC-MS/MS systems in principle applicable for PCDD/F and DL-PCB analysis in food and feed samples
- Sensitive enough to check for dioxins at maximum allowed levels
- GC/HRMS still preferred at lower concentration

Presenation Summary

- Laboratories are showing increasing interest in GC triple quad technology because of inherent advantages in the technology:
 - Low LOQ's from combination of high selectivity with high sensitivity
 - High specificity for more confident results
- Examples of application of technology
 - Organotins in drinking water for reduced LOQ's
 - PAH in rubber for confident detection in worst case matrix scenario
 - Dioxins in food and feed for higher sensitivity/specificity screening

Thank you very much for your attention!

