Analysis of Organophosphorus Pesticides in Drinking Water Using Solid Phase Extraction

Prepared by: <u>T. Dobbs</u>, J. Netzer, J. Salmons and J. Wiseman J2 Scientific, 1901 Pennsylvania Drive, Suite C, Columbia, MO 65202 Contact Information: <u>tdobbs@j2scientific.com</u>; 573-214-0472

Why Should We Measure?

- Organophosphorus compounds are a very major class of pesticides and are exported to almost every country in the world, well over 77 million pounds/year in US alone.
- Most intended uses are for row crops, but are also used for mosquito control as well as household and garden pests thereby increasing exposure risks.
- Contamination from these compounds in water must be monitored due to their acetylcholinesterase deactivation potential.

- Monitoring data exists for most pesticides including OP's in drinking water sources.
- Very little monitoring data until recently of OP pestidices under drinking water conditions
- Some OP's are partially removed by DW treatment processes, but others may be transformed into contaminants which are equally or more toxic than the parent compound.

Method Considerations

- Large numbers of samples require a method which can be run unattended.
- Requires minimum sample prep
- Minimum of sample manipulations

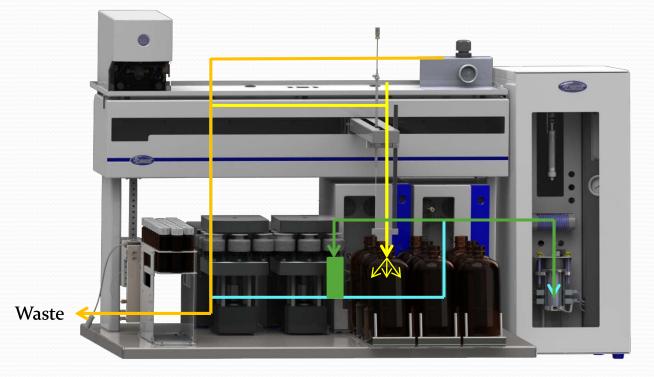
Steps to be Automated:

- 1 Liter samples requiring no pre-extraction
- Large Volume sample through the cartridge in a minimum amount of time
- Drying of Cartridge with no additional manipulation
- Automatic elution and concentration to GC vial
- All surfaces appropriately rinsed to prevent carry-over

An Automated Solution

PrepLinc SPEi System with AccuVap FLX

- Automated, programmable introduction of sample to SPE column
- •High-flow drying
- •Programmable positive pressure SPE elution
- •Inline transfer of elution fraction to AccuVap for concentration
- •Concentrated eluate to GC vial for analysis



The Experiment

- Automatically process drinking water samples
- Samples spiked with 5 common OP pesticides for evaluation: Ronnel, Chloropyriphos, Chlorfenvinphos, Carbophenothion, Coumaphos
- Principle of Method:
 - 1 Liter water samples are passed directly over Bakerbond C-18 Cartridge
 - Cartridge is dried and eluted with 25 mLs Methylene Chloride
 - DCM extraction solvent concentrated to 1.5 mLs
- DCM concentrate is sent directly to GC vial for analysis by GC/ECD
- Demonstrate the full automation, ease of use and flexibility of the system for these compounds and other OP pesticide samples

Flow through PrepLinc System

- Sample is pumped through the SPE C-18 cartridge at user selectable rate.
- When all sample is pumped through, a sample rinse of container is conducted and also sent through cartridge.
- The cartridge is then dried via air for user selectable time.
- Elution is conducted and sent through to AccuVap for concentration..
- AccuVap concentrate is output to waiting GC vial.

Sequence Programming

- Ease of use; quick system setup
- Up to 24 samples set up to run unattended; no technician intervention
- Increased reproducibility compared to manual or semi-automated equipment

Seconce 2 diror 2 Seconce 2 diror 2 Method Explorer 2 Reporting HB Accurate Accurate OPC SPE Sequence Editor Back Accurate OPC SPE Sequence Editor Duration Operation Operation Operation Operation Operation Duration Operation Operation Operation Operation Operation Operation Duration Duration Operation Operation Operation Operation Operation Seconnect Outation Operation Operation Operation Operation Operation Reset Outation Operation Operation Operation Operation Operation Reset Outation Operation Operation Operation Operation Operation New @ Open @ Save @ Print % Settings Current Mat: The Mat.m2k: P Start Pause Terminate
Status [IDLE Status [IDLE Status [IDLE Status [IDLE Status [IDLE Operation Operation Operat
Operation
Duration Set Current Heat Rate 0.0 22.4 Vacuum (Tor) 00760 Exconnect Pressure Reset 0 New @ Open @ Save @ Print % Settings Current Mat: The Mat.m2k > Start Pause Terminate Pesure @
Heat Rate 0.0 23.4 Vacuum (Tor) O0760 O0760 Pressure Image: Constant (Image: Constant (Iman
Asconnect Reset New @ Open & Save Print & Settings, Current Mat: The Mat.m2k. Persure Persure
Vacuum (Ter) 00760 00760 00760 EvS Sensor EvS Sensor Detector 1 2453 2 2463 Material Reset Glumm Position: Bypass Bypass Column Position: Bypass New @Open @ Save @ Print % Settings Current Mat: The Mat.m2k > Satt Pause Terminate Resume @
Asconnect Evis series Flow Rate(m/m) Reset Column Position: Bypass Inter New @ Open _ Save @ Print % Settings ; Current Mat: The Mat.m2k > Start Pause Terminate > Resume @
Reset Oclum Poston: Bypess
New 📸 Open 🚽 Settings Current Met: The Mat.m2k 💿 🕨 Start 🏢 Pause 🛄 Terminate > Resume 🎯
Sample Priority Status Type Method Sample Cartridges Inputs/Output Accurage Type ID Batch Start Time End Time
Volune (uL)
1 🗇 🕐 SPE Phos in Water Rev 1.1vi 4 Edit Edit Edit Edit 6.23/2011 11:57.49 AM 6/23/2011 11:57.49 AM 6/23/2011 11:93.6 PM
2 🔽 SPE Phos in Water Rev 1.1vi S 5 Edit Edit Edit Edit 6/23/2011 1:19:46 PM 6/23/2011 2:41:05 PM

Cartridge Conditioning

• Condition cartridge with choice of solvent or water

• Multiple condition steps with unique parameters

- Program volume and flow rate
- Segregate aqueous and organic waste

New Z	_ Open	Save 5	ave As 🎒 Print 🦄 SPEI Hardware Settings 🥑 Help	
Γ		BLA	NK	
	+	1		
		1		
	+		1 / LVI Line Rinse	
	-	4	2 / Condition	
			Use DI Water Auxiliary Port Volume (uL) Aspirate Dispense (uL/min) (uL/min)	
			Solvent: 4 20%MeOH in Water 🔽 10000 30000 7500	
			Segregate Waste	
			O Organic 💿 Aqueous	
>				
ove				
				•
y 2000 v	5.10		« 🗞 🌿 🕷	7:37 PM

Line Rinsing

•Tubing rinses that are user programmable

•Multiple rinses with choice of solvent or water

•Programmable for volume and flow rate

•Segregation of aqueous and organic waste

L	BLANK				
± 1					
Ũ					
-	1 / LVI Line Rinse				
	Solvent 1	Volume	Pump Rate		
	🗹 Enabled	voiume (mL)	(mL/min)		
	Solvent: 7 DCM	▼ 15	5		
	Segregate Waste				
	⊙ Organic ⊂ Aqueous		Air Purge		
	Solvent 2	Volume			
		(mL)	(mL/min)		
	Solvent: 8 MeOH	▼ 15	10		
	Segregate Waste		_		
			🗖 Air Purge		
	Solvent 3				
	Enabled	Volume (mL)	Pump Rate (mL/min)		
	Solvent: 5 Water	▼ 15	10		
	Segregate Waste		1.0		
	O Organic © Aqueous		Air Purge		

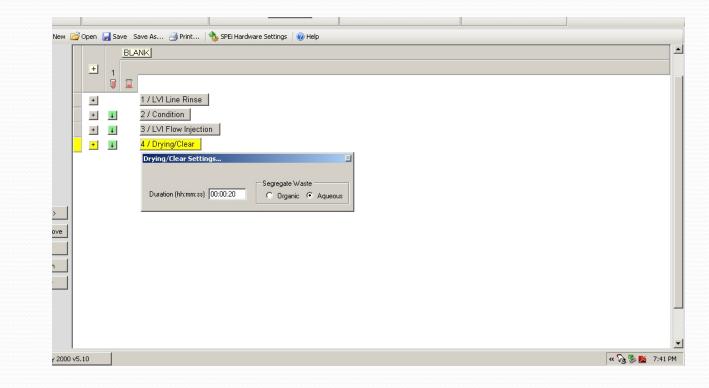
Sample Introduction

•Sample is pumped through the disk or cartridge

•Pumping rates is programmable

•Sample sensing determines end of sample and bottle rinse can be performed

•Waste is segregated


lew	<mark>∕</mark> ∂o	pen 🛔	🚽 Save	Save As 🎒 Print 🔩 SPEI Hardware Settings 🕖 Help		
		+	1	ANK		
ve I		•	•	1 / LVI Line Rinse 2 / Condition 3 / LVI Flow Injection Ivi Flow Injection Settings Sample Volume (mL) 0 Injection Rate (mL/min) 20 No Sample Detected Timeout (sec) 20 Maximum Runtime Timeout (hh:mm:ss) 02:00:00 ✓ Enable SmartTracking (TM) Segregate Waste ✓ Organic < Aqueous		Ţ
2000	v5.1	0			🔍 🗞 🧐 🕵 - 7:	40 PM

Cartridge/Disk Drying

•High-flow drying to speed process

•Drying time is user programmable

•Waste is segregated

Analyte Elution

•Elution step programmable for solvent, volume and flow rate

•Choose to direct elution to collect vial or AccuVap for concentration

•Purge all tubing lines for complete transfer

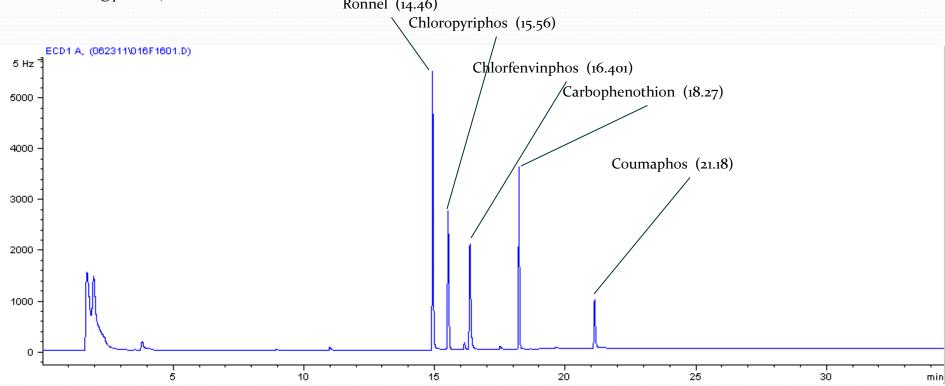
			Column Position: Bypass	
ew 💕 Op			ave 🛛 Save As 🎒 Print 🔩 SPEi Hardware Settings 🕖 Help	
	+ + +	¥ 1	1 / LVI Line Rinse 2 / Condition 3 / LVI Flow Injection 4 / Drying/Clear	
				<u> </u>
2000 v5.10)			« 🇞 🏷 🔀 7:43 PM

Inline Concentration

•AccuVap provides controlled concentration of samples to final volume

•Heat, vacuum, exchange solvents are programmable for every stage of concentration

•Vigorous programmable rinse between samples


•Delivers sample to a GC vial ready for analysis

Reset	Column Position: Bypass
ccuvap Method Editor 🗋 New 🖆 Open 🚽 Save 🛛 Save As 🎒 Print 🍗	Edit 🌯 Accuvap Hardware Settings 😭 Update Solvents 🕖
Live Update	
Sample Introduction	Dilutions/Exchanges
Volume Solvent (uL)	Stage 1
Pre-evap Spike 1000 H Accuvap Syringe Valve Keeper 💌	Volume (uL) 0 Prime Solvent (uL) 0
Time Combine with Previous Sample	Solvent F Accuvap Syringe Valve DCM
Chamber Dump 20 Combine with Next Sample	Exchange Heating Rate Vacuum (Torr)
Sample Introduction Zone Settings 1 2 3	Adjust to Level Mixes 1
Heating Rate 20 29 31	Transfer (uL) 1500 Transfer Dispense Rate (uL/min) 5500
Vacuum (Torr) 300 300 300	Transfer Options
Endpoint	Transfer Last Dilution Only 🗖 SPEi
 Level Sensor Druness 	
Endpoint Time (min) 10 Cool Time (sec) 5	Reps 0 Stage 2
Evaporation Advanced	Volume (uL) O Prime Solvent (uL) O
Endpoint Zone Settings	Solvent
Heating Rate 20 31	Exchange Heating Rate 0 Vacuum (Torr)
Vacuum (Torr) 500 300	Adjust to Level Mixes
Chamber Rinses	Transfer (uL) 0 Transfer Dispense Rate (uL/min) 0
Time Heater Repeats (sec) Bens 1	Transfer Options
art 🞯 🚴 🎪 🚴 PrepLinc 1.2.0.55 [TDob	

Analysis

Summary of GC conditions

Program Init Oven Temp 110 °C, hold 3 min, then to 275 °C at 10 °C/min Restek 30 M Rxi-5Sil MS column250 uM diam 0.25 uM film thickness Det: 330 °C Inj: 250 °C, Splitless FR: He @7.2 mLs/Min Ronnel (14.46)

Typical Data Results

Recovery Selected Phosphates									
5.0 PPB	1	2	3	4	Avg	%CV			
Ronnel	91.6	90.3	84.2	93.7	87.5	4.6			
Chloropyriphos	93.1	93.0	87.3	87.1	90.1	3.7			
Chlorfenvinphos	92.8	93.9	87.5	88.6	90.7	3.5			
Carbophenothion	92.4	93.8	89.6	90.7	91.6	2.0			
Coumaphos	91.8	93.4	90.2	90.8	91.5	1.5			
2.5 PPB									
Ronnel	58.3	59.1	84.3	83.5	71.3	20.4			
Chloropyriphos	64.3	65.0	92.6	91.9	78.4	10.3			
Chlorfenvinphos	59.2	60.5	89.1	89.3	74.5	22.8			
Carbophenothion	58.9	59.9	90.2	90.9	75.0	24.0			
Coumaphos	66.8	67.7	96.5	98.1	82.3	21.1			

Summary

- Organophosphorus pesticides (OPs) are among the most common pesticides used in industrialized countries and are therefore an important source of contamination. These compounds are very toxic when absorbed by human organisms because of acetylcholinesterase deactivation.
- The PrepLinc system provides an easy and convenient sample preparation platform which meets the needs of analytical laboratories by providing:
 - Automated and unattended sample processing
 - Reduction of analytical technician time
 - Fully processed sample requiring no further manipulation

Thank You