Hormones and Antibiotics in Solids

presented by

Paul Fayad, Ph.D. Candidate

under the supervision of

Sébastien Sauvé, Ph.D.

Department of Chemistry

Université 🔐

Exploring the problematic: context

presence of pharmaceuticals and steroid hormo environment are a product of human (as well as a umption and release though feces and urine.

e are many sources and routes of pharmaceutica oid hormones entering the environment.

t of the work done on these compounds is rela r matrices.

vever, it is now demonstrated that solid phases a ficant importance and should be studied.

e in the environment, some of the endocrine disr bounds (EDCs), such as steroidal hormones, may sorb to onmental media and may persist for a long time.

e EDCs were detected in sites where municipal biosolids applied.

s will potentially affect exposed biota and contamin roundwater underlying sites and can eventually mak way towards other water basins.

erefore, the need to develop analytical methods to quantify

Analytical challenges

ne consuming and labor-intensive extractio
 ✓ ultrasonic solvent extraction (USE)
 ✓ microwave assisted-extraction (MEA)
 ✓ pressurized liquid extraction (PLE)

trix complexity and interfering compounds
solid phase extraction (prior to analysis by GC or 2
nature, origin and composition of solid samples have an impact on extraction efficiency

e analysis of multiple classes of compount h different physico-chemical properties with que method

This results in time consuming and labor intensive analytic

elop a **<u>rapid</u> and <u>selective</u> analytical method al ct and quantify selected steroid hormones, paraber maceuticals in multiple solid samples.**

<u>Rapid</u> = i) Laser Diode Thermal Desorption (LDT ii)reduced sample preparation (ultraso extraction with no SPE)

<u>Selectivity</u> = MS/MS

LDTD is a sample introduction method that elimneed for liquid chromatography (LC) and allows a vsis time of **15 sec/sample** instead of several minimized of

Analytical method: LDTD-APCI-MS/MS

ciples of the LDTD-APCI source:

chnique combining thermal desorption (laser diode) and APCI mple is spotted (1-10 μ L) into a 96-well plate; air-dried for 2 min ncharged analytes are thermally desorbed into the gas phase nization takes place in a corona discharge region by APCI

ntages of LDTD-APCI-MS/MS over LC-MS/MS: nalysis is done in 15 sec versus several minutes in LC-MS/MS nall sample volume (1-10 µL) versus on-line SPE-LC-MS/MS ss contamination (tubing, column, injection loop or port, divert valv wer costs (solvants, columns, tubing, syringes, pumps)

Corona needle posi (APCI)

r power is defined in %

ed laser (980 nm, 20W)

ell Plate (96 wells): analyte desorption (1-10 µL spotted)

fer tube transporting the neutrally desorded analytes to the APCI region

OTD-APCI-MS/MS method optimization

e is no need for liquid chromatography optimization distinct additional LC-MS/MS since it has been eliminated.

- first step is sample optimization for MS (precurso MS (SRM transitions) conditions in NI and PI mod minimum of 2 SRM transitions were selected + their ion ra
- ical parameters of the LDTD-APCI source to nized to improve signal intensity :
- olvent choice for analyte deposition in the well cavities aser power (%)
- arrier gas flow (L/min)
- and demonstrice (demonstrice volume in uI) into plate wall

ant choice for deposition: example for hormones PI mode in matrix (effluent) at 2 mg/L, n=3.

r power (%): example for hormones and parabens e in matrix (effluent) at 2 mg/L, n=3.

er power (%) is compound dependant and will ording to affinity with the well plate surface, solve ier gas flow (L/min): example for hormones in NI atrix (effluent) at 2 mg/L, n=3.

osition volume (μL): example for PROG in PI mo ix (effluent) and neat solution at 2 mg/L, n=3.

r pattern: example for PROG in PI mode, in uent) at 2 mg/L, n=3.

alytical method: extraction procedure and meth validation

action of solid phases (soil, sediments and sludge ca wrist-shaker shake vigorously :EtOAc (5:1 v/v)(25°C, 45 min) evaporatio IS the organ ultrasonic extraction sediment freeze- $(V_{f} = 0.2)$ centrifugation (30°C, 30 min) r 0.2 g sludge (1500*g*, 10 min) complet evaporation (N_2) of the organic phase Method detection limits (MDLs) (ng/g)reconstitution, 5 mL Heptane:Acétone (65:35 v/v) nd sediments **Sludge cakes** Parabens Parabens Hormones nes filtration on Silica cartridge 1.4 - 2.9 9.0 - 172.8 - 6.4.0 elution, 6 mL Heptane:Acetone (65:35 v/v) mmon procedure for soil/sediments and sludge cakes

ocedure for soil and sediments

evaporation (N₂) of the organic phase

	SEDIMENTS				SOILS				BIOSOLIDS			
	R ²	Intra-day precision (% R.S.D.)	Inter-day precision (% R.S.D.)	MDL	R ²	Intra-day precision (% R.S.D.)	Inter-day precision (% R.S.D.)	MDL	\mathbf{R}^2	Intra-day precision (% R.S.D.)	Inter prec (% R	
	0.990	4	9	2.5	0.987	3	8	2.9	0.975	13	. 1	
	0.998	7	11	4.0	0.990	5	8	3.0	0.962	8	1	
	0.991	2	8	2.1	0.991	3	6	3.4	0.987	8	1	
	0.995	2	8	3.2	0.990	3	7	3.2	0.998	11		
	0.993	5	10	2.0	0.991	6	9	3.2	0.969	14	1	
el	0.996	4	11	2.8	0.992	2	12	2.4	0.971	7		
esterone	0.996	4	8	0.9	0.990	3	8	1.4	0.966	5		
	0.991	8	11	2.5	0.992	6	9	2.4	0.988	5)	
	0.997	3	7	0.7	0.991	4	5	2.9	0.973	9	1	
en	0.982	2	6	1.3	0.987	3	3	1.6	0.974	3	,	
	0.993	7	8	1.8	0.991	7	6	2.5	0.965	8)	
n	0.990	5	9	1.9	0.994	4	11	2.3	0.989	4		
	0.982	9	9	1.6	0.989	7	8	1.9	0.987	4	,	
n	0.981	10	6	2.8	0.983	9	11	2.5	0.980	6	ł	

lation parameters including linearity (R²), repeatability, reproducibility and method detection limit (MDL, ng

4. Mean concentration (mean \pm SD, n = 3) of the selected compounds (ng g⁻¹) in sediments (SEDIMENT-I and

	SEDIMENTS		SO	ILS	BIOSOLIDS		
•	Ι	II	II	III	Ι	II	
1	18 ± 3	6 ± 3	15 ± 3	28 ± 9	69 ± 3	45 ±	
liol	70 ± 7	22± 4	93 ± 12	81 ± 11	57 ± 3	41 ±	
ha-ethinylestradiol	30 ± 6	n.d	86 ± 12	34 ± 11	55 ± 3	47 ±	
ie	16 ± 6	6 ± 3	7 ± 2	10 ± 2	54 ± 3	32 ±	
nindrone	90 ± 9	n.d	93 ± 17	91 ± 22	106 ± 3	105 ±	
orgestrel	19 ± 5	n.d	24 ± 12	52 ± 17	53 ± 3	33 ±	
oxyprogesterone	29 ± 3	n.d	28 ± 4	13 ± 3	31 ± 3	22 ±	
sterone	12 ± 4	≤ LMD	31 ± 9	19±6	89 ± 3	72 ±	
	16 ± 4	n.d	53 ± 9	13 ± 2	59 ± 3	43 ±	
lparaben	56 ± 7	n.d	127 ± 12	107 ± 4	72 ± 2	91 ±	
oaraben	12 ± 2	n.d	≤ LMD	15 ± 3	\leq LMD	n.c	
lparaben	15 ± 4	n.d	5 ± 2	9 ± 1	8 ± 1	n.c	
oaraben	19 ± 3	n.d	20 ± 5	23 ± 4	≤LMD	n.c	

SOIL-II and III) and municipal sludge cakes (Biosolid-I and II).

DTD-APCI-MS/MS method was develop for the rapid (15 sec/s ion and quantification of selected steroid hormones and paral different solid matrices (soil, sediments and sludge cakes).

proved (less time and labor-intensive than previous methods) ext of for all three matrices was applied using only an ultrasonic ext simple clean-up procedure added for the sludge cakes because of exity.

vork demonstrates the possibility of applying high-throughput a ltiple compounds in solid matrices of different origins.

Sébastien Sauvé, Ph.D. (Université de Montréal) et

Michelle Prévost, Ph.D. (École Polytechnique de Montréal)

act me at <u>paul.fayad@umontreal.ca</u> for more details.