

Critical Considerations for Data Quality in Elemental Speciation Analysis

Hakan Gürleyük, Ph.D. hakan@appliedspeciation.com

Who is Applied Speciation?

- Started in 2005, doubling in size and revenue almost every year after that
 - 17,000 sq ft state-of-the-art laboratory
 - **4** Elan DRCII, **3** Elan 6000
 - PE Series 200 HPLC systems, Various IC Systems,
- Provide routine analyses for compliance purposes (NELAC, CLIA Certified, FDA Compliant)
- Routinely perform research to understand limitations of compliance methods and rectify them
- Routinely perform internal and contract research to better understand the chemistry in the presented sample
- Internal Seminars, Internal Poster competitions
- Strong dedication to client satisfaction and data quality

Interest in Elemental Speciation Analysis

- Speciation analysis is the analytical activity of identifying and/or measuring the quantities of one or more individual chemical species in a sample.
 - The chemical species are specific forms of an element defined as to isotopic composition, electronic or oxidation state, and/or complex or molecular structure.
- Different forms of an element can have totally different properties.
 - Essential for predicting and modeling fate, risk, and effects, Critical for toxicology, bioavailability, and bioaccumulation.
 - In fact, speciation of an element can even impact total elemental analysis.
- Speciation Analysis Can Answer Tough Questions
 - Do I have hexavalent chromium in my drinking water?
 - Why doesn't my treatment work?
 - Is there inorganic arsenic or methylmercury in my diet (fish, milk, supplements, etc)?
- More scientists are interested in speciation analysis
 - Over 400 papers* between 2000-2003 on arsenic speciation only! Information overload?
- There are only a few commercial laboratories performing routine speciation analysis

Experience in Speciation Analysis

gained knowledge through direct observation or participation

- Many types of samples processed for speciation analysis in our lab
 - Algae, kelp, etc
 - Cosmetics
 - Milk (cow, soymilk, rice milk etc)
 - Human organs (brain, kidney, stomach contents, etc), semen
 - Blood, urine (human, rats, etc)
 - Wastes (landfill, sludges, etc)
 - Soils, sediments
 - Various types of fish

- Fish eggs, fish meal
- Mussels, shellfish, clams
- Nutraceuticals
- Pharmaceuticals (APIs, excipients)
- Dyes and paints
- Rice and rice products
- Wine, wine cooler, beer, juices, etc
- Cheese, cheese brines
- Yeast

"Current" EPA Methods for Speciation Analysis

- Method 1632: Arsenic Speciation by Hydride Generation Quartz Furnace Atomic Absorption Spectrometry (Based on a paper by M.O. Andreae (1977))
- Method 1630: Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and CVAFS (Based on Nicolas Bloom et al (1988))
- Method 7199: Determination of hexavalent chromium in drinking water, groundwater, and industrial wastewater effluents by ion chromatography. (Based on Arar et al. (1991))
- Excellent methods but they utilize reaction-based analytical techniques
 - Reaction based methods are more prone to interferences
- Data Quality issues due to QA/QC holes
- Almost all new methods in the literature use better instrumentation such as ICP-MS
 - More sensitive and selective (no need for preconcentration and or reaction chemistry)
 - Allows for species specific isotope dilution analysis (SIDMS)

Quality Control Criteria for 1632a

TABLE 2. QUALITY CONTROL ACCEPTANCE CRITERIA FOR EPA METHOD 1632¹

	IPR (Section 9.2)			Calibration Verification	MS/MSD (Section 9.3)	
Analyte ²	s	X	(Section 9.7)	(Section 9.5)	%R	RPD
IA	< 25%	60-140%	50-150%	80-120%	50-150%	< 35%
As ⁺³	< 25%	40-160%	30-170%	70-130%	30-170%	< 35%
MMA	< 20%	70-130%	60-140%	80-120%	60-140%	< 25%
DMA	< 30%	50-150%	40-160%	70-130%	40-160%	< 40%

¹ Acceptance criteria based on quality control data generated during As speciation analysis for the Cook Inlet Study (1998). Details can be found in Beference 16.16.

² IA - Inorganic arsenic (As⁺³ + As⁺⁵); MMA - monomethylarsonic acid; DMA - dimethylarsinic acid.

As Speciation in Tissues Extraction Methods from Literature

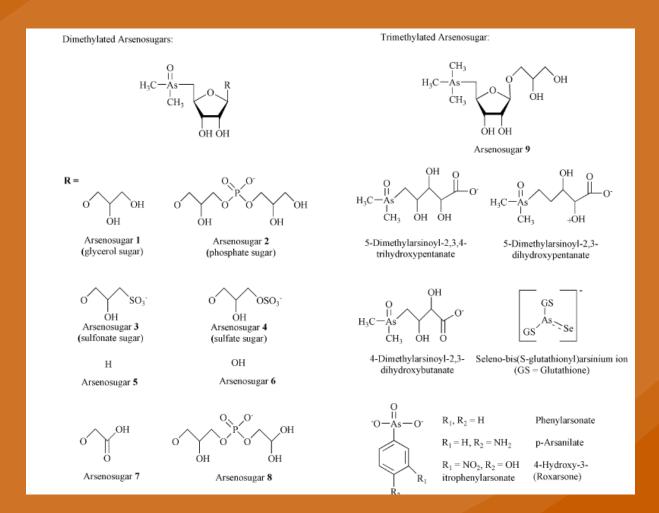
- 0.83% TMAOH
- 2M HCl (EPA Method 1632)
- Water
- Water:Methanol
- TFA
- Phosphoric acid
- Enzymes

- Shaking/mixing
- Sonication
- MW-assisted
- Heating
- Sub/supercritical fluid
- ASE
- Soxhlet

What is expected?

- 100% recovery of all arsenic species in ANY matrix without ANY species interconversion
- In our experience, there are no methods that work on every sample matrix.
- Our goal is to extract as much As species as possible without any species interconversion

Best Extraction Method?


- Depends on the matrix but there are no guarantees
- Even for similar matrices different extraction methods can work significantly better
- Can we come up with a single extraction method for regulatory purposes?
 - Good luck...
- Sequential extraction?
 - Could be expensive!

Inorganic vs. Organic Arsenic

Organoarsenic species are defined as As bound to at least one C atom

Inorganic vs. Organic Arsenic

Species Interconversion

- EPA Method 1632 uses 2M HCl in a closed vessel extraction @ 80oC for 16hrs
 - Method 1632 has been commonly used to determine "inorganic" arsenic in fish tissue
- In our experience, we extract more Inorganic Arsenic with this method than any other method
- Question: Are we extracting more or are we breaking up proteins and possibly As-C bonds?
- We need to incorporate QA/QC protocols to identify if this happens or not...

CRMs

- A CRM should be run with every batch of samples but we need better CRMs.
 - NRC and IRMM has various RMs for speciation
 - NIST is working on it
- 100% extraction efficiency for CRMs does not mean 100% recovery of all As species in real samples.
- CRM's are usually highly processed (freeze dried, well homogenized)
- Looking for collaborations to see the effects of freeze-drying process (contamination, oxidation and extraction efficiency)
 - Couldn't find any literature data.

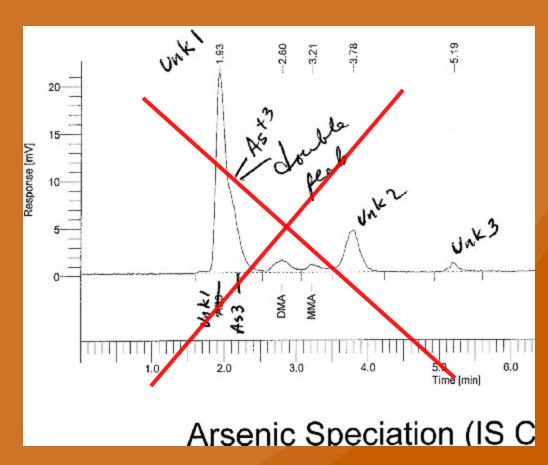
QA/QC

- LCS using every standard available
 - Effect of extraction on species stability (A good method should not cause oxidation/reduction/degredation, etc)
- MS/MSD using every standard available
 - Effect of extraction + matrix on species stability (reduction of species, creation of new species)
- AS/ASD using every standard available
 - Effect of extraction + matrix on chromatography (co-elution, misidentified peaks)
- Compound independent calibration is possible.
 - Allows accurate quantification of unknown species without any standards
 - The RPD between the slopes of each species should be less than 5% (If not, suspect impurities, signal depression/enhancement)

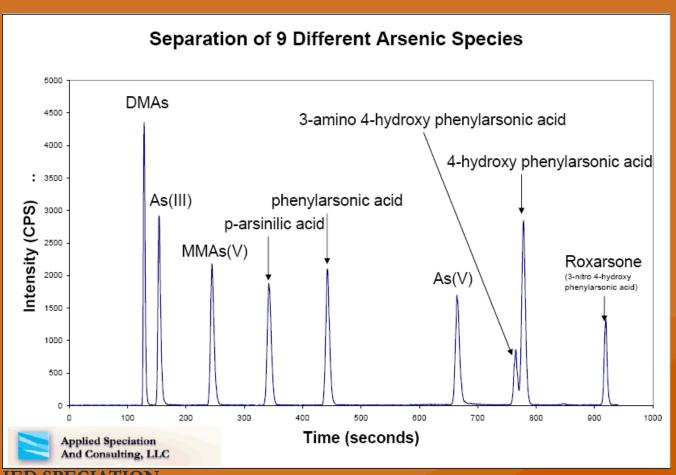
Extraction of As Species from Tissues

TMAH Extraction (mg/Kg)	TV	As(V) Found	% Rec
TIVIALI EXCIDENT (IIIS) NS)		AS(V) I Oullu	70 NEC
STD 01-18-06 As in Oil	100	69.340	69.3
Triphenylarsine (01-22-08)	12.3	0.021	0.17
Triphenylarsine Oxide (01-22-07)	6.15	0.017	0.28
After HAc Neutralization (mg/Kg)	TV	As(V) Found	% Rec

After HAc Neutralization (mg/Kg)	TV	As(V) Found	% Rec
STD 01-18-06 As in Oil	100	118.672	118.7
Triphenylarsine (01-22-08)	11.6	0.511	4.41
Triphenylarsine Oxide (01-22-07)	5.80	0.201	3.47

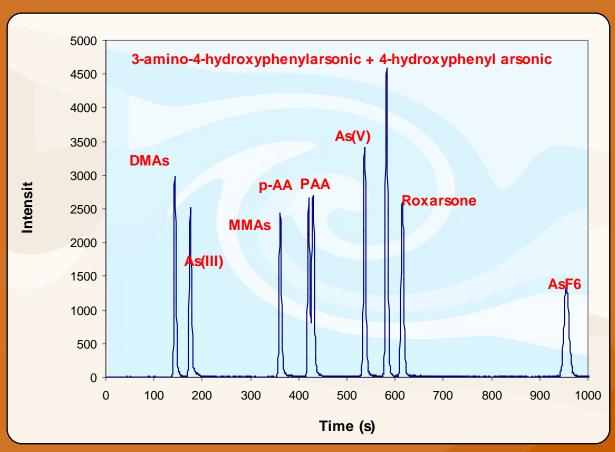


QA/QC

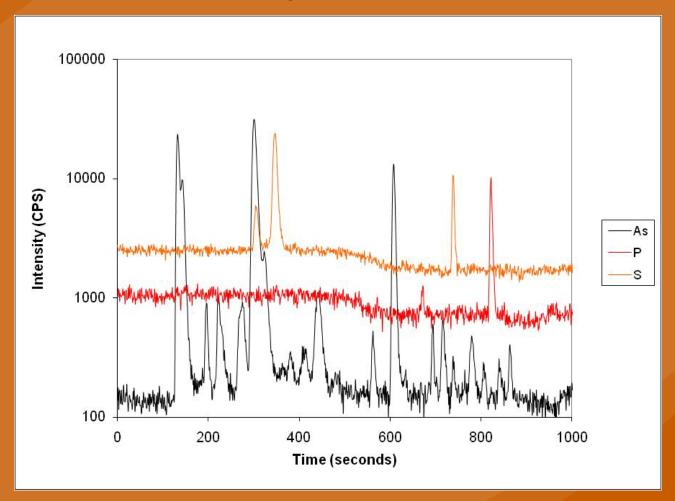

- Correlation of sum of species with total analyte in the sample and in the extract is very valuable.
 - Extraction efficiency and chromatography efficiency
- Failed Spikes/low recoveries can tell us something
 - Low As(III) recoveries due to lipid content
 - Low As(V) recoveries due to Fe content
 - Oxidation/reduction can usually be monitored by As(III)/As(V) of the spikes

Speciation Methods Gone Wrong!

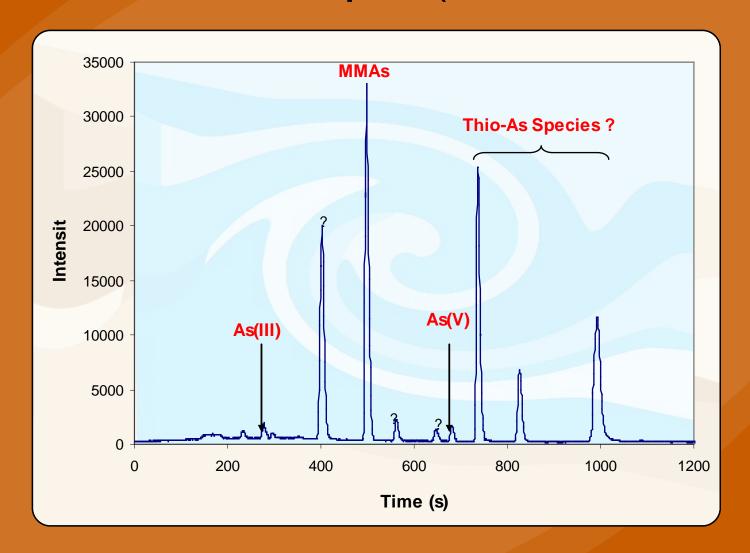
- Target Analyte species should be retained on the column.
- Species that elute in the dead volume can cause false identification/quantification
- Extra attention to tailing/shouldering peaks (especially on Inorganic As species).



Separation of Different As Species



Separation of Different As Species



Why do we need this separation power?

Algae Extract

Wastewater Sample (500X dilution)

Preservation of Arsenic Speciation

- Even the most sophisticated analytical methods for speciation are useless if it cannot be assured that the species distribution in the sample remains unchanged between collection and analysis.
- Speciation in the field = No need for preservatives
- Temperature, pH, light, dissolved oxygen, container material, microbiological activity, or other water constituents, have previously been identified as potentially-detrimental to the stability of As species in waters.
- Is there a universal preservative?

Preservation of Arsenic Speciation

- Hydrochloric acid
- Complexation
- Flash freezing (cryo freezing)

Stability and Preservation of Se Species

- Apart from filtration, no preservatives should be used.
 - The stability of different Se species is not well understood and changes in pH may cause species interconversion
- Cryofreezing in the field may work well for some samples
- Selenite, selenate, SeCN in filtered samples sent over blue ice and kept in the refrigerator were found to be stable 21 days
 - MSe(IV) and SeMet were not stable

Field Spikes

- Applied Speciation also utilizes field spikes to confirm preservation of species information.
- A stock solution of target analyte is added to specific samples
- These samples are analyzed to determine if any oxidation or co-precipitation reactions occur during sampling and shipping

Check the purities of your standards

- Almost all standards gravimetrically
- The total concentration of the analyte may be correct but speciation may not...
- A lot more often than people think...
 - Received a 1000ppm MeHg std that contained 300ppm Hg(II)
 - Selenite std that contained selenate

Certification Process for Speciation Standards

953 Industry Drivo Tukwella, RM, 98188 Tel: (206) 219-3779 Fam: (206) 388-3485 www.appiledspeciation.com

Certificate of Analysis

Standard Name: Dimethylselenide (DMSe) Calibration

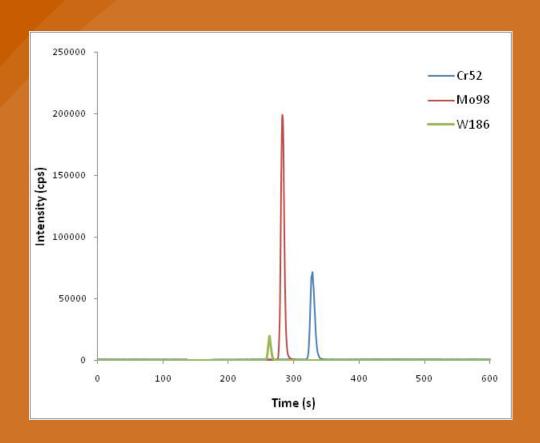
 Date Prepared:
 5/14/2009

 Standard ID:
 STD-01-16-12

 Analyte (Unit):
 DMSe (mg/L as Se)

Analytical SOP: N/A
Analytical Description: N/A
Preparation SOP: N/A
Preparation Description: N/A

Matrix: Acetonitrile (CH₂CN)


Date: 08/11/09 Dataset IDs: See below

Replicate	Date Digested	Detweet ID:	Dataset Sample ID	Concentration*
1)	5/21/2009	ICPMS-090604-TM-Se	110C DmSe	327.3
2)	6/23/2009	ICPM8-090625-TM-DM8e	DMSe cal	334.0
3)	6/23/2009	ICPM8-090625-TM-DM8e	DMSe cla D	316.2
4)	6/23/2009	ICPM3-090625-TM-DMSe	DMSe cal T	323.5
5)	8/5/2009	ICPMS-090810-TM-SeNa	DMSe Cal	326.0
6)	8/5/2009	ICPMS-090810-TM-SeNa	DMSe Cal MD	324.8
7)	8/5/2009	ICPMS-090810-TM-SeNa	DMSe Cal MT	338.1
			Mean =	327.1

Standard Deviation = 7.1
Relative Standard Deviation (%) = 2.2

Certified Value: 327.1 mg/L as Se

Internal Standards?

Molybdate and Tungstate as Internal Standards for Cr(VI)

Best Internal Standard is the enriched ⁵³Cr(VI) but they have ⁵²Cr(VI) impurities

Conclusions

- IC-ICP-MS has been applied for As, Se and Hg speciation in many different matrices successfully at Applied Speciation
 - ASC does not have a universal method for any speciation analysis
 - Different methods for different matrices is necessary
 - ASC-SOP 015.1 "Method Development and Validation"
- Conventional ICP-MS instruments can produce false positives
 - Use of reaction cell instruments are highly recommended!

Future of Speciation Analysis

- More work is needed for wide spread adaptation of the technique
 - New CRMs (NIST, NRC, IRMM)
 - Better Standards (NIST and commercial)
 - Guidance on acceptable methodology (EPA, FDA, etc)
 - Establishing (better) QA/QC requirements (EPA, FDA, etc)
- More interdisciplinary collaborations are needed
- Experience is very important
 - While setting up an LC-ICP-MS system is very easy, the most important things to consider are:
 - Knowledgeable project managers
 - Experienced analysts who are familiar with both IC/LC and ICP-MS systems
 - Analysts that can interpret and report the data

Acknowledgements

- Staff @ Applied Speciation
 - Russ Gerads, Ben Wozniak, Tyler Kennedy, Jacob Meyer
- Anonymous Clients