

Trace Analysis of Hexavalent Chromium using IC-ICP-DRC-MS

Hakan Gürleyük, Ph.D.

hakan@appliedspeciation.com

APPLIED SPECIATION www.appliedspeciation.com

info@appliedspeciation.com

Who is Applied Speciation?

- Started in 2005 in a 1000 sqft warehouse space
 - 17,000 sq ft state-of-the-art laboratory since 9/09
 - 4 Elan DRCII, **3** Elan 6000s
 - PE Series 200 HPLC systems, Various Dionex IC Systems, Clarus 600 GC-ICP-MS Interface
 - Access to Agilent 6520 Q-TOF, Bruker MALDI TOF-MS
- Provide routine analyses for compliance purposes (NELAC, CLIA Certified, FDA Compliant)
- Routinely perform research to understand limitations of compliance methods and rectify them
- Routinely perform internal and contract research to better understand the chemistry in the presented sample
- Internal Seminars, Internal Poster competitions
- Strong dedication to client satisfaction and data quality

APPLIED SPECIATION www.appliedspeciation.com

Analytical Methods for Cr(VI) Analysis

Method 7196: Colorimetry

- Colorimetric method is prone to interferences. (False positives (Mo, V, Hg) and MnO4-, Turbidity, Organic matter)
- Method 7199/218.6: Ion Chromatography UV
 - Ion chromatography is used to separate Cr(VI), detection is achieved by a post column reaction with diphenyl carbazide

Various preconcentration methods

- Followed by colorimetry, FAAS, ICP-AES, ICP-MS detection
- Preconcentration methods are operationally defined which means what works on one specific matrix may fail on another...

Evolution of IC-UV Methods

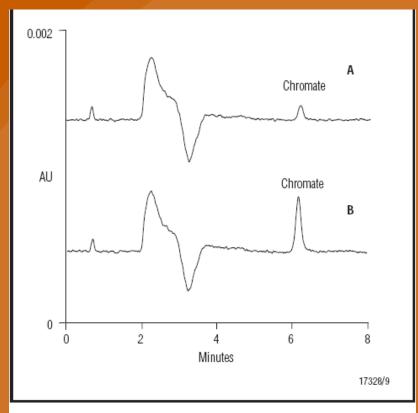
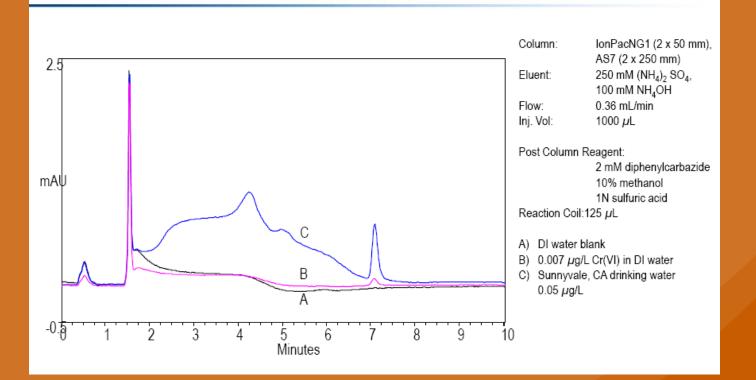


Figure 5. Determination of chromate in drinking water. Conditions: as for Fig. 3, except sample, buffered Sunnyvale, CA drinking water (A) and drinking water spiked with 0.2 μ g/L chromate (B); peaks, (A) chromate (0.055 μ g/L) and (B) chromate (0.245 μ g/L)



APPLIED SPECIATION www.appliedspeciation.com

- Dionex AS7 4mm Column
 1mL injection loop
- Detection limit = 0.018ppb

The new method (DL = 0.001ppb)

Cr(VI) Analysis using 2 mm format

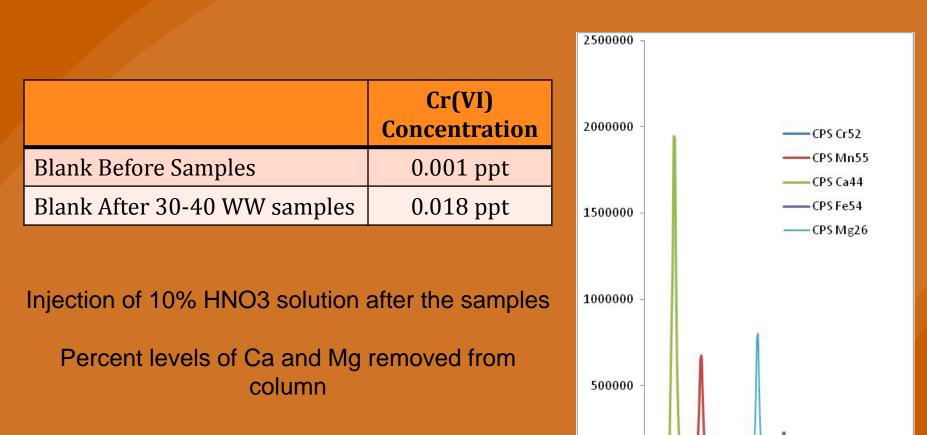
From LCGC Webinar 5/10/2011

AS7 Column Properties

Table 1 IonPac AS7/AG7 Packing Specifications						
Column	Particle Diameter μm	Substrate X-linking %	Column Capacity µeq/column	Functional Group	Hydrophobicity	
AS7 4 x 250 mm	10.0	2	100	Alkyl quaternary ammonium	Medium-High	
AG7 4 x 50 mm	10.0	2	25	Alkyl quaternary ammonium	Medium-High	
AS7 2 x 250 mm	10.0	2	25	Alkyl quaternary ammonium	Medium-High	
AG7 2 x 50 mm	10.0	2	6.25	Alkyl quaternary ammonium	Medium-High	

The 2mm AS7 Column has 1/4th the capacity of the 4mm AS7 The 4mm AS7 Column has a total internal volume of 3.14 mL The 2mm AS7 Column has a total internal volume of 0.79 mL **The new and improved method injects 1mL of buffered sample**

Not much different than injecting 4mL sample onto a 4mm AS7 column



Matrix Effects for Blanks?

- Most samples contain significant amounts of Ca, Mg, and transition metals such as Fe, Mn, and Al
 - 85% of drinking waters in USA are Hard Waters (>60ppm Ca, Mg)
- Some samples (wastewaters) can contain significantly higher concentrations (upto10,000ppm Ca+Mg for FGD Wastewaters)
- Single injection of a Drinking Water sample may introduce 60ug of Ca
- Single injection of an FGD wastewater may introduce 10mg of Ca and Mg into the column

Blank Issues

Cr(VI) Analysis using IC-ICP-MS

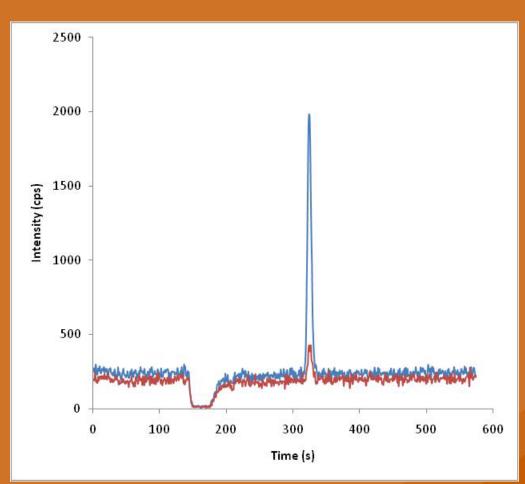
Determination of chromium(III) and chromium(VI) using suppressed ion chromatography inductively coupled plasma mass spectrometry[†]

Hakan Gürleyük* and Dirk Wallschläger

Received 26th March 2001, Accepted 22nd May 2001 First published as an Advance Article on the web 6th August 2001

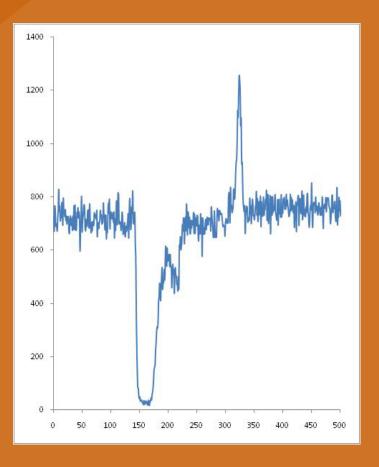
Table 1 Comparison of detection limits for chromium speciation analyses by LC-ICP-MS (not corrected for injection volume)

	Detection 1						
Technique	Cr(III)	Cr(vı)	Ref.				
IC-ICP-MS	400	1000	11				
IC-HHPN-ICP-MS	100	200	12				
IC-ICP-MS	300	500	13				
IC-ICP-MS	330	440	16				
HPLC-DIN-ICP-MS	00	180	17				
IPC-ICP-MS	300	300	25				
IC-ICP-MS	5	12	This work				
APPLIED SPECIATION							
www.appliedspeciation.com							


Providing less than 10ppt detection limits for the last 10 years utilizing ion chromatography coupled to an ICP-MS

FULL PAPER

IAAS


Hexavalent Chromium by IC-ICP-MS

10ppt Cr(VI) standard vs. Blank

Actual Samples

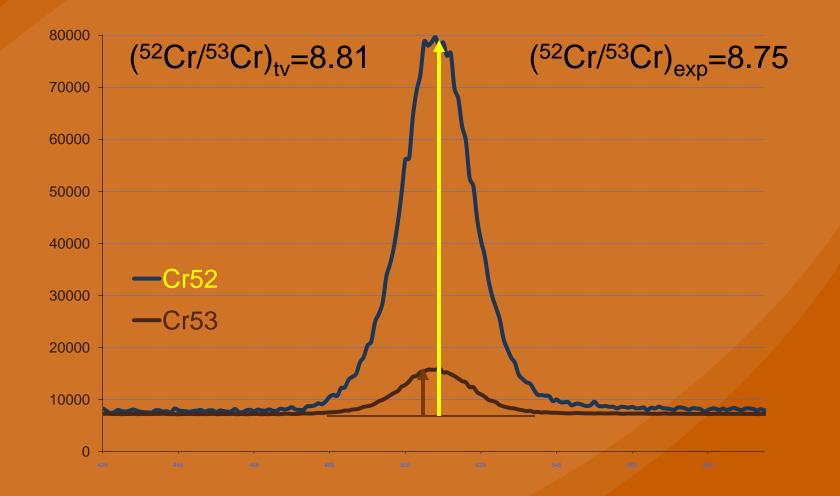
An Actual Ground Water Sample containing 3.6ppt of Hexavalent Chromium

Cr(VI) Problems DW Utilities Face

Sample ID	Cr(VI)	Units
Source Water 1	0.017	µg/L
Treated DW 1	0.134	µg/L
Source Water 2	0.021	µg/L
Treated DW 2	1.37	µg/L

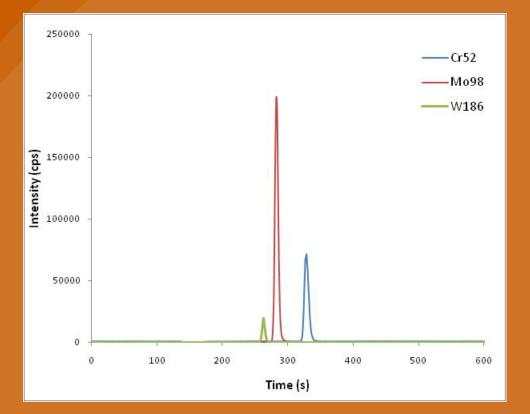
Sample ID	Cr(VI)	Units
Lime Source 1	14.5	mg/kg
Lime Source 2	1.76	mg/kg

For some utilities, the problem arises from their treatment system



Field Spikes

- Applied Speciation also utilizes field spikes to confirm preservation of species information.
- A stock solution of Cr(VI) standard is added to specific samples
- These samples are analyzed to determine if any oxidation or co-precipitation reactions occur during sampling and shipping



Identification by Isotopic Ratios

Internal Standards?

Molybdate and Tungstate as Internal Standards

Best Internal Standard is the enriched ⁵³Cr(VI) but they have ⁵²Cr(VI) impurities

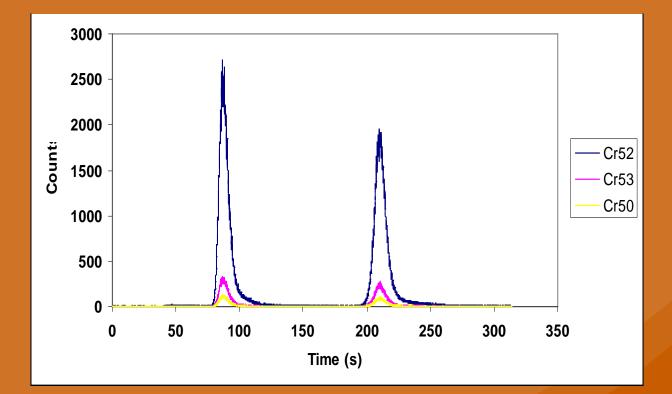
Cr(VI) in Soils and Sediments

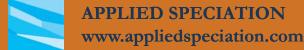
- Method 3060a for extraction
 - Alkaline extraction that stabilizes Cr(VI)
- Oxidation and/or reduction can happen concurrently
- ASC utilizes Cr(III), Cr(VI), and Pb(CrO₄)₂ spikes
 - MDL for 3060a/7199 = 0.0013 mg/Kg
- We can also perform Speciated Isotope Dilution Mass Spectrometry
 - Uses enriched Cr isotopes
 - Legally defensible
 - Applied Speciation is one of only 2 labs in the world certified to perform this method

APPLIED SPECIATION www.appliedspeciation.com

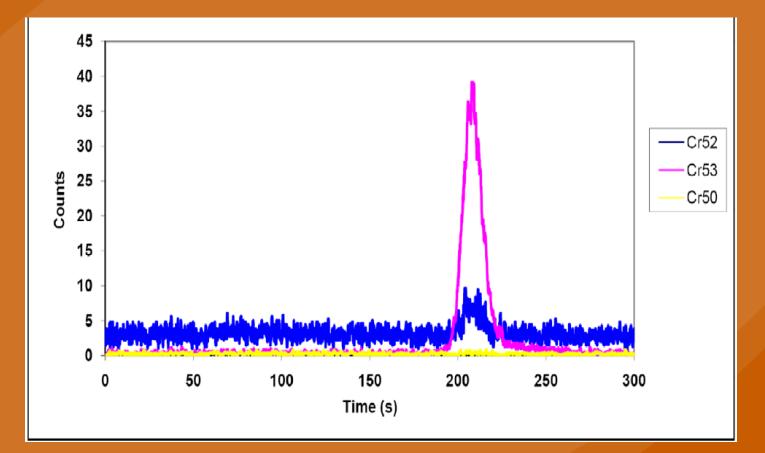
Isotope Dilution Mass Spectrometry (IDMS)

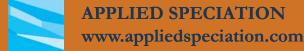
- Has been around for a long time
- Applicable to a variety of elements
 - Pb, Hg, U, Re, Fe, Zn
- DRC technology offers unique advantages
 - Collisional Damping of the ICP noise in the dynamic reaction cell
 - This damping allows precise measurement of isotope ratios on a sequential quadrupole analyzer.
 - Internal precision is shown to be limited by counting statistics only.



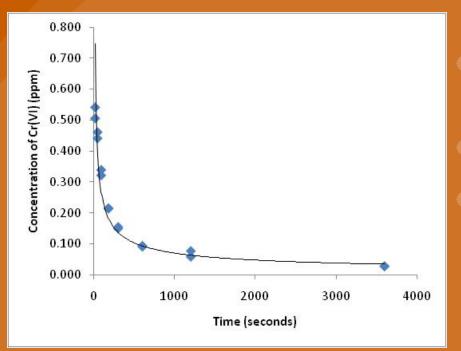

Speciated Isotope Dilution Mass Spectrometry (SIDMS)

- Traditional speciation methods attempt to hold each species static while making the measurement.
- In SIDMS, each species is "labeled" with a different isotopeenriched spike in the corresponding species form.
- Thus, the interconversions that occur after spiking are traceable and can be corrected.
- SIDMS is also a diagnostic tool that permits the evaluation of species altering procedures and permits evaluation and validation of other more traditional speciation analysis methods.




Separation of Cr(III) and Cr(VI)

Isotopically enriched Cr(VI) standard



What is needed?

- License from Applied Isotope Technologies to use the SIDMS method
- Isotopically enriched Cr(III) and Cr(VI) standards
 - ⁵⁰Cr(III) and ⁵³Cr(VI)
 - EXPENSIVE!!! ~ \$4,000,000 per gram
- IC method that can separate Cr(III) and Cr(VI)
- ICP-DRC-MS that can accurately monitor all 3 Cr isotopes (m/z 50, 52, 53)

Fate of Cr(VI) After Ingestion

- Human Gastric Fluid (diluted 10X) from a volunteer
- Spiked with 1ppm of Cr(VI) at t=0
- At each time point, an aliquot is collected and spiked with enriched Cr(III) and Cr(VI) standards

Is it perfect?

Nothing is perfect!

- The method requires that the added spike concentrations are within 0.1 – 10 times the native concentration of each species
 - Need to somehow know approximate concentrations of each species before analysis
- If there is 100% conversion, the concentration can not be calculated
 - For extremely reducing or oxidizing samples, it may not work

Conclusions

- Instead of patching the problem, we should try to fix it once and for all...
- ICP-MS is a powerful technique
 - Has been used for speciation analysis of As, Se, Cr, Hg, V, Sb, Sn, Pb for the last 20 years.
- Every lab seems to have at least one or two ICP-MS instruments...
 - Only people crazy about providing the highest quality data will dedicate an \$150K instrument for Cr(VI) analysis ...
- IC-ICP-MS can achieve the detection limit requirements without jeopardizing data quality
- IC-ICP-MS has the capability of incorporating important QA/QC measures that ensure data quality
- Experience is very important
 - Knowledgeable project managers, experienced analysts who are familiar with the chemistry of metals and metalloids, Knowledge of both IC/LC and ICP-MS systems, Analysts that can interpret and report the data

Acknowledgements

• Staff @ Applied Speciation

- Russ Gerads, Ben Wozniak, Tyler Kennedy, Jacob Meyer
- Anonymous Clients

