National Environmental Monitoring Conference 15 – 19 Aug 2011, Bellevue, WA, USA

Monitoring and fractionation of low-level phosphorus in water and environment

Wei Ning YAP, Kok Yong LIM, Wei ZHANG, Zhongxian GUO

PUB Singapore

Outline

- Introduction
 - Phosphorus (P) as nutrient and pollutant
 - Various forms of P
- Common analytical methods
- ICP-OES optimization
- Monitoring
 - Total P and Dissolved P
 - Reservoirs
 - Sediments
 - Detergents

Introduction

Phosphorus as nutrient

- Essential nutrient for all life forms
- Active roles in DNA, RNA, ADP and ATP

Freshwater guideline	Total Phosphorus (ug/L)
Ultra-oligotrophic	< 4
Oligotrophic	4 - 10
Mesotrophic	10 – 20
Meso-eutrophic	20 – 35
Eutrophic	35 – 100
Hyper-eutrophic	>100

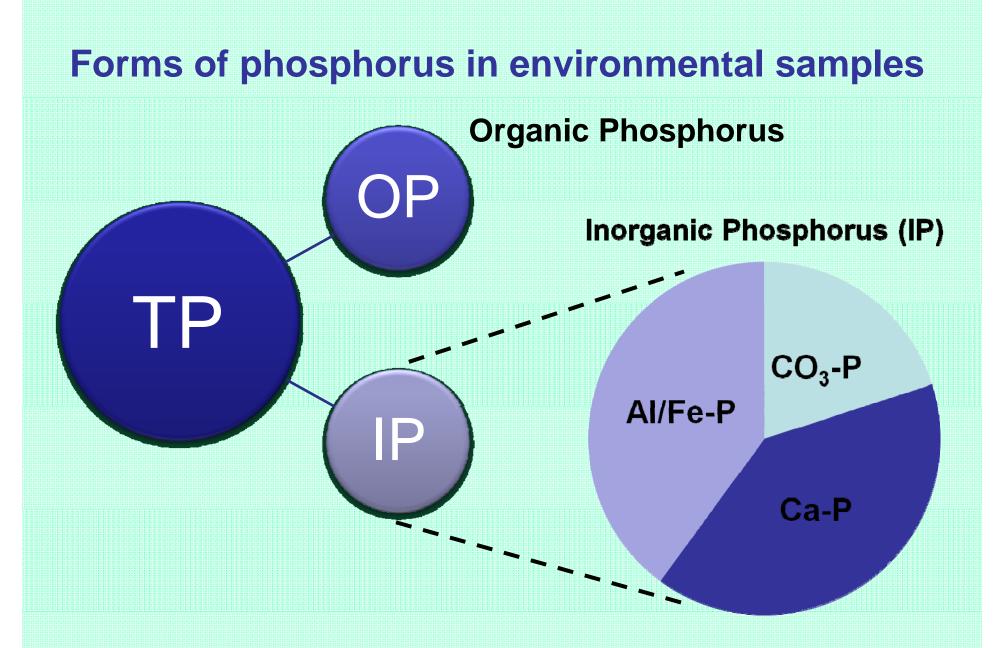
Canadian Water Quality Guidelines, Phosphorus, February 2005

Introduction

Phosphorus as a pollutant

- Eutrophication of freshwater with undesirable changes:
 - Excessive algae growth
 - Reduced water clarity
 - Unpleasant odour and taste
 - Low dissolved oxygen
 - Changes in fish populations or fish kills
 - Toxins from bluegreen algae
- PO₄ > 1.0 mg/L may interfere with coagulation in treatment
- Total P at < 60 µg/L, to prevent algae bloom

Introduction


Sources

 Industries, food, pharmaceuticals, detergents, agricultural sites, leach from reservoir sediment sink

Regulation in water

	Phosphate (mg/L)
Stream not flowing into lake/reservoir	<0.10
Stream flowing into lake/reservoir	< 0.05
Within lake/reservoir	<0.025

*Federal criteria (USEPA, 1986)

Water for All: Conserve, Value, Enjoy

🤇 PUR

Common analytical methods

Methods	Features	Detection Limits (DLs)
	Orthophosphate (PO ₄ -) Anion-exchange column Conductivity detector	High µg/L
ICP-OES	TP & Dissolved P Element emission line (P 214.917 nm)	µg/L
ICP-MS	TP & Dissolved P $m/z = 31$	Sub-µg/L

Common analytical methods

Spectrophotometry involves two steps:

Detection **Methods Features** Limits (DLs) Ascorbic acid Fe³⁺, Cu, SiO₂, High µg/L turbidity and color SiO_2 , arsenate High µg/L Vanadomolybdo- $Fe^{3+} > 100 mg/L$ phosphoric Acid High µg/L Stannous SiO_2 , arsenate $Fe^{3+} > 100 mg/L$ Chloride

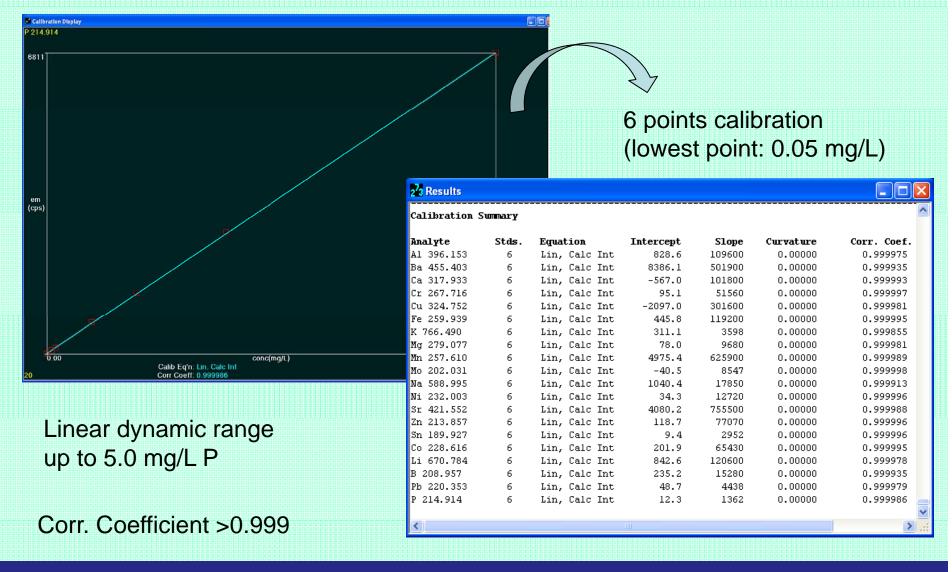
Digestion

Colorimetric

Ι.

ii.

Method adopted

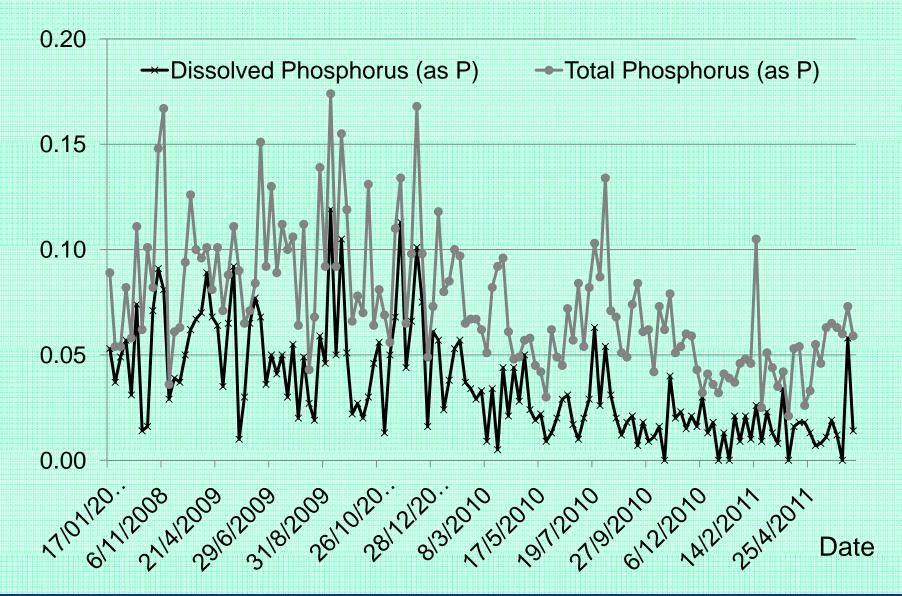

- ICP-OES
 - Better sensitivity (MDL: 3 µg/L) than spectrometry and IC
 - Multi-element capabilities
 - Higher sample throughput/productivity
 - Phosphorus emission lines at 177.434, 178.221, 213.617 and <u>214.914</u> nm
 - A less expensive approach per analysis
 - Fewer interference than quadrupole ICP-MS (without collision-reaction cell)

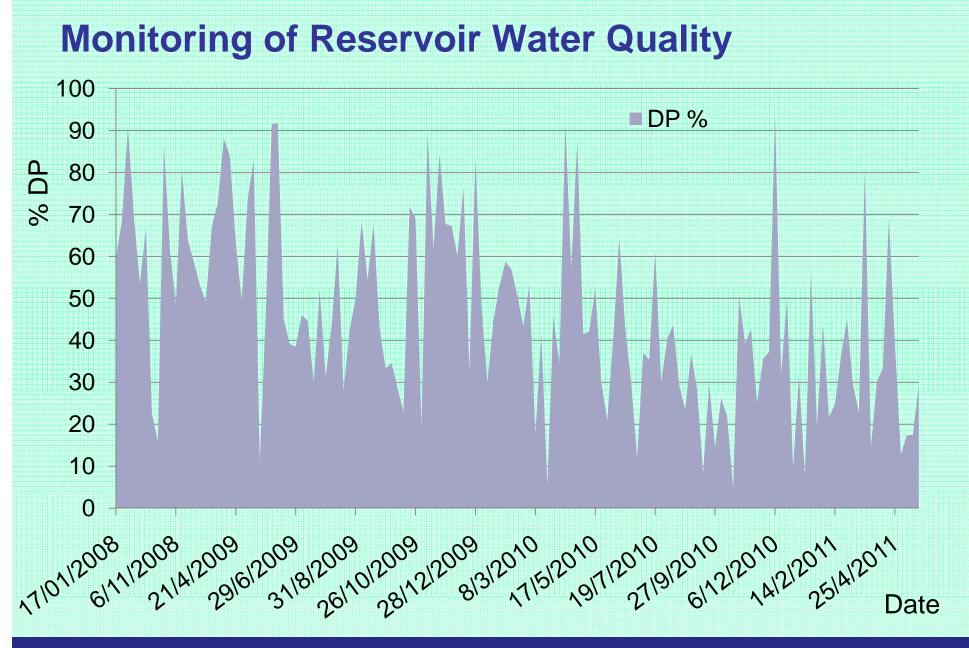
Method Adopted

• ICP-OES optimization

	Before	After
Nebulizer flow (L/min)	0.80	0.65
RF power (W)	1300	1350
Spectral correction, P at 214.917 nm Probable interference: <i>Cu (with emission lines at 213.598 nm and 214.897 nm).</i>	<text></text>	<section-header></section-header>

Method Adopted

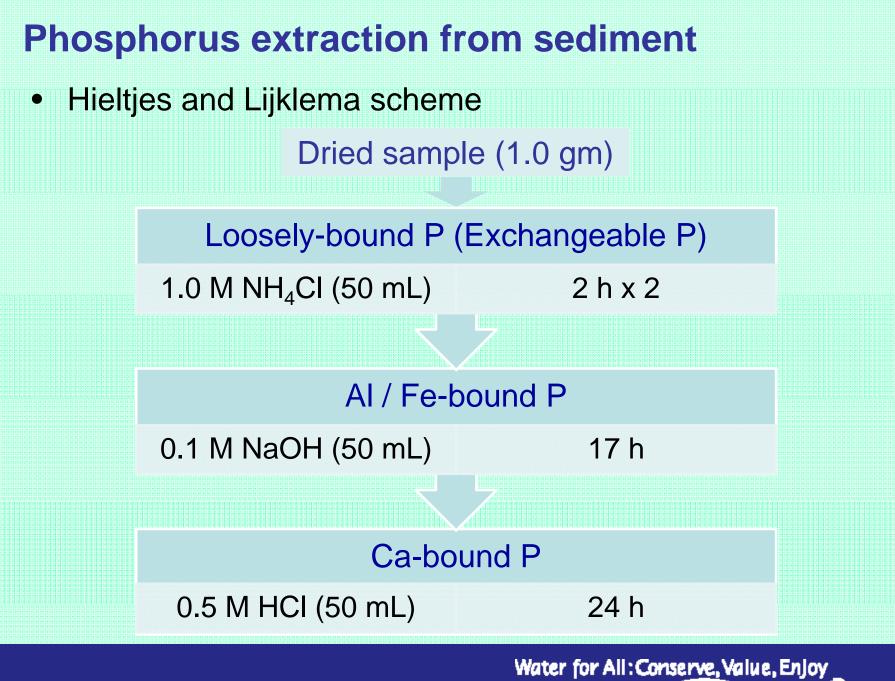



Reservoir and Catchment Water

- Total Phosphorus (TP)
 - Acid digestion
 - 50 mL of sample into digestion vessel
 - 1.5 mL conc. HNO₃ (3% v/v HNO₃)
 - 0.5 mL conc. HCI (1% v/v HCI)
 - Digest for 4 h at 95°C hot block
 - Top up to 50 mL with DI water
- Dissolved Phosphorus (DP)
 - Filter 50 mL of sample through 0.45 µm filter membrane (Nylon)
 - Steps as per that of TP

Monitoring of Reservoir Water Quality

Concentration (mg/L P)


Water for All: Conserve, Value, Enjoy

Sediment

Some forms of P in sediment may release into river and lakes.

- Sequential extraction procedures
 - i. Hieltjes-Lijklema¹
 - ii. Williams²
 - iii. Golterman
 - iv. Ruttenberg
- Hieltjes and Lijklema method
 - 1.0 M NH_4CI , extract for 2 h, 2 times
 - 0.1 M NaOH, extract for 17 h
 - 0.5 M HCl, extract for 24 h

¹A. H. M. Hieltjes and L. Lijklema, *J. Environ. Qual., 1980,* **3**, 405 ²J. D. Williams, T. Mayer and J. O. Nriagu, *Soil Sci. Soc. Am. J.*, 1980, **44**, 462

🖉 PUR

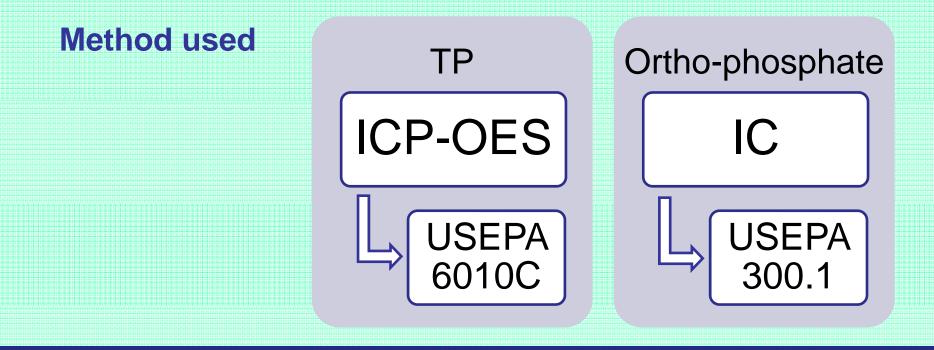
Sediment

- Hieltjes and Lijklema scheme
 - Each extractant was adjusted to pH 7.0
 - Centrifuged at 300 rpm for 30 min
 - Each filterate was forced through 0.45 µm membrane
 - Further dilutions before introduction into ICP-OES for phosphorus analysis

Fractionation of Phosphorus in Sediments

(mg/kg, dry weight)	Marina A	Marina B	Marina C	Punggol	Upper Pierce
Total P	520	1060	462	3580	204
Loosely bound P	21.4	6.5	18.2	665	1.81
Fe/AI bound P	140	590	93	2275	157
Ca bound P	197	280	196	386	15.0
Organic P	162	184	156	255	30.2
Water content (%)	73.5	79.9	69.5	63.9	44.5
Fe	39,200	40,200	32,700	29,700	3,180
AI	89,000	81,500	58,500	79,900	1,650
Ca	9,260	7,190	18,800	7,520	211

Water for All: Conserve, Value, Enjoy


O PUR

Fractionation of Phosphorus in Sediments

Composition (%)	Marina A	Marina B	Marina C	Punggol	Upper Pierce
TP (mg/kg)	520	1060	462	3580	204
Loosely bound P	4.12	0.61	3.94	18.6	0.89
Fe/Al bound P	26.9	55.7	20.1	63.5	77.0
Ca bound P	37.9	26.4	42.4	10.8	7.35
Organic P	31.2	17.4	33.8	7.11	14.8

Detergents

- Phosphorus-containing detergents: a potential pollutant, discharged to drainage system
- To determine the concentration of ortho-phosphate and total phosphorus present in commercial detergents

Detergent

- Determination of Total Phosphorus (TP) by ICP-OES
- Sample digestion
- Operating conditions
 - PerkinElmer Optima 5300DV
 - Argon flow: 15 L/min
 - Auxiliary flow: 0.2 L/min
 - Nebulizer flow: 0.65 L/min
 - RF Power: 1350 W
 - Axial view
 - P (214.914 nm)

Detergents

- Determination of Ortho-phosphate (PO₄) by IC with conductivity detection
- Operating conditions
 - Dionex ICS-3000
 - Guard column, Dionex IonPac AG9-HC, 4 x 50 mm
 - Separation column, Dionex IonPac[®] AS9-HC, 4 x 250 mm
 - ASRS 45 mA
 - Sample loop of 50 μL
 - Eluent, 9.0 mM Na₂CO₃ at 1.00 mL/min

Detergents (powder form)

Sample	TP (mg/kg)	OP (mg/kg)
UIC (Bio)	8.32	7.73
Attack	60.2	52.2
Fairprice detergent	93.2	28.7
Downy	44.4	1.30

Detergents (liquid form)

Sample	TP (mg/L)	OP (mg/L)
Kiwi Kleen	5.68	2.56
Mama Lemon	156	106
Amorall	61.9	46.9
Essence	3.85	3.75
Woolite	381	25.4
UIC (liquid)	56.4	8.32
Dynamo	516	5.74

Water for All: Conserve, Value, Enjoy

🖉 РИЛ

Conclusions

- ICP-OES (USEPA Method 6010C) with sample preparation: Good for the testing of total P and dissolved P in reservoir and catchment freshwater.
- Better than spectrometry, especially in the case of low levels of P
- Phosphorus in sediments can be fractionated by sequential extraction and ICP-OES analysis
- Levels of phosphorus in household detergents varied much

Acknowledgement

- Special thanks to PUB colleagues

 Sampling team
 - Inorganic Chemistry Laboratory

~~~Thank You~~~