

Importance of sample timing, handling and other methods to low-level analysis of phosphorus in lake water

Gertrud Nürnberg, Ph.D. Freshwater Research, Baysville, Ontario www.fwr.ca

Thank you

- Invitation by Session Chairs
- Travel grant by NEMC
 Conference Coordinator, *Jerry Parr* of the
 NELAC Institute

Charlie Patton

- 1. Reasons NOT to use low-level analysis
- 2. What may be more important instead

Problems with low level analysis

- Contamination
- Need a lot of replicates (high analytical effort)
- Few comparative data from other studies/ systems available
- High cost, effort, specialization, etc.
 "Trade off"
- Transient "Snapshot": not reproducible (high sampling effort) – example "Blooms"

- Urban, larger Metro Toronto area
- Well-buffered, hardwater
- Area: 56 ha; Max Depth: 16 m
- Dimictic kettle lake
- Meso- to eutrophic: summer TP 25 30 µg/L
- Internal phosphorus load is 65% of total load
- Anoxic hypolimnion

Cyanobacteria vs SRP

(dissolved reactive P, detection limit 0.5 µg/L)

Cyanobacteria vs Ammonium

Detection limit: 0.002 - 0.005 mg/L

6

Cyanobacteria vs Nitrate&Nitrite Detection limit 0.005 mg/L

7

Bluegreen algal bloom in Fanshawe Lake on August 26, 2005

Fanshawe Lake Nitrate and Chlorophyll

9

Bloom Indicator: Low-Nitrate-Days

The period of time during summer and early fall, when nitrate concentration is below 1-2 mg/L

The quest for adequate phosphorus measurements in lakes

What is the analysis for?

- Assessment for nutrients by routine monitoring, trophic state definition (Country, State, County)
- Remediation of eutrophication problems (Specific lake or watershed)
- Modelling (Scenarios, TMDLs)
- Specific scientific questions

What may be more important than LLA - Outline -

- Background knowledge
 - Limnological characteristics
 - Historic data ("blooms", fish kill)
 - Knowledge from other studies/systems
- Adequate sampling & handling, w/o contamination
- Determine related variables (instead or in addition)
- Adequate monitoring plan
 - Spatial and temporal sampling
 - Specific fractions to be determined
- Use a model instead

(MOST) Important background knowledge

- Surface water
 - Eutrophication
 - Cyanobacterial blooms
 - What is limiting algal growth?
- Hypolimnia in lakes and reservoirs Anoxic or not?

Background knowledge Water is anoxic

SRP, dissolved reactive P filtered through 0.45 µ, colorimetric assay, molybdenum blue - ascorbic acid

Sampling & handling: aeration or gas-tight

- Interference: H₂S, Fe, organic (humic) acids
- Differs with method
 - Auto analyser
 - Dilution
 - Holding & bench time

Interference Fe & H₂S in SRP analysis Effect of Aeration

Analytical complexities in anoxic waters Iron and hydrogen sulfide interferences with SRP

- Iron: oxygenation of Fe²⁺ to Fe³⁺ and formation of oxy-hydroxides that adsorb PO₄ → SRP is underestimated
 Prevention by anoxic filtration
 Further interference by humic acids
- H₂S: Interference with molybdenum blue PO₄ assay (reductant)
 - \rightarrow SRP is underestimated

Prevention by aeration before filtration

Solution: total reactive P (TRP), aerated SRP vs TRP in anoxic hypolimnetic samples

from 5 softwater lakes with high Fe

3 hardwater with H₂S

Determine related variables

- Simpler to measure:
 - In anoxic water:
 - TRP instead of SRP
 - TP instead of SRP
 - SRP instead of BAP
 - Dissolved iron (SFe) for SRP
 - Secchi transparency for chlorophyll a pigment
 - Hydrogen sulfide smell or low redox potential instead of low dissolved oxygen

TP instead of SRP in anoxic hypolimnia Hypolimnetic SRP versus TP

19

In anoxic hypolimnia

- With increasing TP, an increasing proportion is SRP, at 100 µg/L about 80%
- Almost all SRP is biologically available BAP*

At least 90%, when small amounts of hypolimnetic water are added to large amounts of surface water

*Using radioactive bioassays that analyze for PO₄

SRP instead of BAP in anoxic hypolimnia

21

Dissolved iron (SFe) for SRP Anoxic samples of Fitch Bay, Lake Memphremagog, QU, VT

What may be more important than LLA - Outline -

- Background knowledge
- Adequate sampling & handling
- Determine related variables
- Adequate monitoring plan
 - Spatial and temporal sampling
 - Variables to be determined
- Use a model instead

Adequate monitoring plan

1. Spatial and temporal sampling

- Representative or worse conditions wanted?
- Bays with polluted inlets or max depth location
- Reservoir sections: riverine, transition, dam
- Water intake location (reservoir)
- Surface vs. hypolimnion
- Growing season, fall turnover, under ice

2. Careful selection of variables to be measured

Hells Canyon Complex, ID/OR

Brownlee Reservoir, ID/OR

Total length: 100 km Deep section: 48 km

Depth: 60 m Width: <1 km

Brownlee Reservoir, Gradient along axis

Total phosphorus concentration averages in the surface water in summer 1999 and 2000

SRP concentration averages in the surface water in summer 1999 and 2000

Adequate monitoring plan (2)

- 1. Spatial and temporal sampling locations
- 2. Careful selection of variables to be measured & determine limits necessary for meaningful study
 - That interfere with analytical procedures (Fe, H₂S)
 - That correlate with analyzed variable (SFe vs. SRP)
 - That can replace needed variable (NO₃ instead of blooms)
 - That are measured routinely and frequently in comparison studies (TP rather than SRP)
 - That are input to a specific model to be used (TDP instead of TP in river models)

Careful selection of variables to be measured (2) **P Fractions in Water**

- TP total P: digested then molybdenum-blue (MB) analysis for PO₄
- SRP (DRP) soluble reactive P: filtered through 0.45 μ then MB (PO₄, biologically available)
- TRP total reactive P: (unfiltered) MB
- **PRP** particulate reactive P: TRP-SRP (Fe-P)
- **DP** total dissolved P, filtered, then digested, then MB
- PP particulate P: TP-DP (seston, plankton)
- **BAP** biologically available P (bioassay)

What may be more important than LLA - Outline -

- Background knowledge
- Adequate sampling & handling
- Determine related variables
- Adequate monitoring plan
 - Spatial and temporal sampling
 - Variables to be determined
- Use a model instead
 - example Muskoka lakes

Muskoka lakes on the Canadian Shield (Central Ontario)

TP concentration from Internal Load in 500 Muskoka Lakes

Internal Load Increases from Development in Muskoka Lakes бп) 10.000 of internal load induced P 1.000 Ο 0.100 \circ_{O} \bigcirc 0.010 Development Index = ncrease (P developed – P natural) / 0.001 P natural 0.001 0.100 0.010 1.000 **Development Index** 36

Low Level Analysis

- Problems with LLA
- What may be more important
 - Know, what the analysis is for
 - Consider, what is known about the system: Background knowledge
 - Adequate sampling, handling, and monitoring plan