

The Future of Vapor Intrusion (VI) Monitoring and Analysis

National Environmental Measurement Conference

Bellevue, WA

Aug. 15, 2011

Presented by:

Henry Schuver, DrPH

USEPA - Office of Resource Conservation & Recovery (ORCR) Wash. DC

See: http://epa.gov/oswer/vaporintrusion

http://iavi.rti.org & www.envirogroup.com/vaporintrusion

Agenda

- 1) Summary of Monitoring Observations to-date
 - Variability (spatial & temporal)
- 2) Interpretation & Future Needs
- 3) Potential Evolution of Monitoring & Analysis
 - Including Consideration of Radon in VOC VI ?
- 4) Novel Field Analytical Technique Mickunas

Simple conceptual model of the vapor intrusion exposure pathway

Mod. from slide by M. Bolas, Ohio EPA, presented Jan. 2006

How do you identify which buildings are impacted by VI?

Graphic from Enviro-Group, Ltd.

Radon Studies show each Building can be Unique Changes illustrating the importance of Building factors

American Association of <u>Radon</u> Scientists and Technologists 2007 Proceedings Of the 2007 AARST International Symposium Jacksonville, FL, 2008©AARST

Figure 4 Examples of large radon changes created by house modifications

Note, the difficulty of estimating changes in heating or air condition or adding porches; and also impacts to VI.

Steck 2007, see: http://www.aarst.org/proceedings/2007/8-SteckYTYRnvariation07.pdf

Groundwater—Subslab — Indoor Air Attenuation — Billings and LAFB

(Lowry Air Force Base, Colo.)

More attenuation occurs between the <u>subslab</u> and indoor air (~1E-03; 1/1000) than occurs between groundwater and <u>subslab</u> (~1E-01; 1/10).

Chemical VI data sets now show Where Most Attenuation Happens*

w/ Samples & Possibly Influential & Measureable Factors

Events between

11

the blue

?

dots

Radon workers have long focused on buildingspecific factors - interacting with environ. variables

RADON

A Guide for Canadian Homeowners

Samples Characterizing the VI Source are Important, but Only Indoor Air samples are:

Building-Specific

- &
- Reflect the full (cumulative) effects of:
 - Source type
 - Subsurface migration factors
 - Building factors
 - (& indoor sources)
 - Atmospheric factors
- External samples can not or do not include the last two parts of the equation (which represent 99% of attenuation)
 - i.e., Can be used to screen source-terms (w/generic attenuation) but
 - Should Not play a part in Exposure Assessments

Temporal Changes in VI Behavior: Considerations for Pathway Assessment

Ira A. Fulton Schools of Engineering

TCE Indoor Air Concentrations

Temporal variation at the Example house

EPA min. 2-day sample duration for Radon Slide by Dr. Dan Steck, from AEHS March 2011

Seasonal indoor radon variation

STUDIES ON TEMPORAL VARIATIONS OF RADON IN SWEDISH SINGLE-FAMILY HOUSES

Lynn Marie Hubbard, Hans Mellander, and Gun Astri Swedjemark Swedish Radiation Protection Institute, S-171 16 Stockholm, Sweden

Environment International, Vol. 22, Suppl. 1, pp. S715-S722, 1996

Indoor Air Samples

Rightslink Copyright Clearance License No. 2114510809616

Summary of Radon Conc. (Bq/m³) Hubbard et al. 1996 (Sweden)

•	Sample	Factor	Range	Avg.	<u>Period</u>
•	1-Day	100x	~8 to 800	yr.	4 yr. '90-94
•	2-Week	4.3x	70 to 300	yr.	4 yr. '90-94
•	Year	1.3x	180 to 230	-	4 yr. '90-94

four year period Nov. 1990 – July 1994

1-Day samples (chemicals) Folkes et al., 2009

- 715 indoor air samples of 1,1-DCE (24-hr samples)
- 45 unmitigated (<u>low conc</u>.) homes
- Data from 2 to 10 years (w/ Qtr annual frequencies)
 - "The [indoor air] normalized [by property annual average conc.] values ranged [max.-min.] from about $\underline{10\%}$ (0.1x) ... to about $\underline{ten\ times}$ (10x) the $\underline{annual\ average}$ of the home"
 - Range of variation = 2 orders magnitude (100x)
 - 68% of samples w/n +/- 2 to 3x of the homes annual mean
 - Winter concentrations tended to be highest and summer was about 50% lower than the annual mean
 - "Short term variability can overwhelm any seasonal trend" [very similar to comment by Rowe 2002]

Multi-day measurement variation

Annual average
Monthly average
Four day average
Two day average

Surveys: variation around annual average

- 80 MN houses (Steck 2005)
 - 2d COV ~75%
 - 4 d COV ~70%
 - 30d COV ~40%
- 480 US homes(White 1994)
 - 2d COV ~70%;

References: Steck 2005 White 1994

Steck 2005

Residential Radon Risk Assessment: How well is it working in a high radon region?

Figure 3. Linear regression between ST screening measurements and the annual average radon in the house (one high radon house is not shown) in the Temporal survey

Radon Screening Lessons

Steck 2005

- In an area with a high level of radon:
 - "The efficiency of the [2 to 4 day] diagnostic test is ... <u>not much different from a random</u> ... test's efficiency."
 - i.e., close to <u>50 50</u>
 - "homeowners who believe based on their single screening [2 to 4 day long indoor air] measurement, that they have a house below the action level are often mistaken."

Year-to-year indoor radon variation

Example House

Survey

- Variation in 99 Upper Midwest house over 2 decades
 - COV ~25% (factor of 1.25) persistent trend at 20% of the houses
- Factors affecting annual variation
 - Annual snowfall
 - Wind at site
 - Changes in HVAC, structure and winter window covers
- Factor not affecting
 - Radon concentration, house age, number of floors, heating type, active ventilation...

Reference: Steck 2009

Appears hard to predict future intrusion of radon into an existing house (with a stable radon source) & chemical sources can be more variable

Possible Recommendations for VI from Radon Lessons

- Use Indoor Air samples
- Take longer duration samples*
 - *Appropriate for the health outcomes of concern (e.g., for windows of vulnerability)
- Use Radon Measurements:
 - As general tracer of soil-gas entry into indoor air
 - If radon gets in, so do other gases + vapors
 - To identify vapor-permeable homes for chemical testing
 - » Indicator of high VI risks (Rn & low/possible chemical)?
 - Can radon levels help justify 'pre-emptive' actions?
 - To test the <u>on-going performance</u> of mitigation systems

RADON

FIGURE 1

Human Health-based studies (2005) required:

Generalized Geologic Radon Potential of the United States by the US Geological Survey

1 yr-long samples to enter Scale Continental United States and Hawaii 0 100 200 300 400 500 Miles Miles

Risk* ~ **2.3000%** (4pCi/L)

EPA's Perspective on

"Indoor radon ... the most

Risks from Residential

serious environmental

must address for the

general public"

carcinogen which the EPA

Radon Exposure

20,000 Lung* Cancers/yr

But: Complacency & Costs

Jalbert, 2004

Puskin 1989

Geologic Radon Potential (Predicted Average Screening Measurement)

* adult cancer

Low (>2 pCi/L)

Moderate/Variable (2-4 pCi/L)

High (>4 pCi/L)

Zones Based on indoor air & geology

From Frumkin, H. et al. CA Cancer J Clin 2001;51:337-344.

The same VI pathway

Real 'background' for chemical VI

With chemical VI you get BOTH

Potential Chemical Testing of Vapor Control/Mitigation Systems

- Type of Response Action:
 - Pre-emptive Vapor Controls
 - Definitively-Determined as-Needed VI Mitigation
- Possible Sampling/Monitoring During:
 - Installation
 - Subslab baseline concentration location-specific
 - Operation
 - Vent-pipe on-going concentrations through time <u>slab-wide</u>
 - Subslab concentrations through time location-specific?
 - Termination of Mitigation Systems
 - Vent-pipe and subslab concentrations after shut down?

Thank You

Questions / Discussion