# Trace–Level Automated Mercury Speciation Analysis

Vivien Taylor,<sup>1</sup> Brian Jackson, <sup>1</sup> Annie Carter, <sup>2</sup> Colin Davies <sup>2</sup>

Trace Element Core, Dartmouth College
Brooks Rand Labs





EPA 1630 Methyl Mercury in Water (and biological/sediment extracts) by Distillation, Aqueous Ethylation, Purge and Trap, and CVAFS (ICP-MS)

Brooks Rand Labs MERX<sup>®</sup> Automated Methylmercury System

Aims:

- 1. Automated low-level methyl Hg determination
- 2. Coupling automated system with ICP-MS
- 3. Determination of higher MW Hg species

### Methyl Hg in environmental samples by EPA 1630

<u>Methyl Hg</u> bioaccumulates – speciation in <u>multiple</u> compartments of the environment

- Hg methylation in sediment
- Methyl Hg in surface water is a predictor of fish Hg
- low trophic level organisms < 90% methyl Hg



Superfund site, Berlin NH

Surface water Periphyton Benthic organisms – mayfly, caddisfly, dragonfly, crayfish Juvenile fish – minnows, bass "Snack-size" fish – smallmouth bass, perch Swallows, bats Sediment Porewater

#### Trace – Level Automated Mercury Analysis

# Add buffer and derivatizing agent (NaBEt<sub>4</sub>)

Hg species to react with ethylating agent t = 17 min

Purge ethylated Hg species from solution t = 17 minand preconcentrate on Tenax trap

Dry Tenax trap

 $t = 7 \min$ 

EPA 1630

Thermal desorption and separation by t = 6 min packed column GC with detection by AFS

# Advancements to EPA 1630

- Detection by ICP-MS: Speciesspecific isotope dilution:
- Enriched isotope spike: CH<sub>3</sub><sup>201</sup>Hg



Correction for: v matrix effects / ethylation efficiency v species transformation

✓ inorganic Hg (<sup>199</sup>Hg)



### Advancements to EPA 1630

<u>High MW Hg species</u> vaccines, pesticides, cosmetics, biological samples

Derivatizing agents – propylation, butylation, phenylation Internal standards – spike with high MW Hg species



# MERX-M Automated Methylmercury System



- Autosampler for 72 40mL vials
- Gas pressurized liquid transfer to purge vessel for aspiration of volatile Hg species
- •Three Tenax traps rotate between loading, heating and drying, enabling a 6.5 min. sample time.
- •IR heating to volatilize Hg from trap
- Packed column gas chromatography and pyrolysis
- Atomic fluorescence detection





<u>Manual method</u>: ~30 samples in 8 hrs., 8 hrs. of analyst time

<u>Automated method</u>: 72 samples in 10 hrs., 2 hrs. of analyst time



#### Configuring MERX-M to AFS/ICP-MS detection



Atomic Fluorescence Detection :

Brooks Rand Model III CVAFS

ICP-MS detection :

Thermo Element 2 magnetic sector ICP-MS

Agilent 7500 quadrupole ICP-MS







#### Method detection limit

7 calibration standards

LOD: Limit of Detection – 3 times  $\sigma_{blank}$  (n=9) LOQ: Limit of Quantitation – 10 times  $\sigma_{blank}$  (n=9)

MDL: Method Detection Limit - 3 times  $\sigma_{std at LOQ}(n=8)$  0.5pg (12.5 pg/L)

# Methyl Hg determination

#### EPA recommends MDL of 20 pg/L

|            | CH <sub>3</sub> Hg <sup>+</sup> |           |         |                  |  |
|------------|---------------------------------|-----------|---------|------------------|--|
|            | AFS                             | ICP-MS    | ICP-MS  | <b>ID-ICP-MS</b> |  |
|            |                                 | Element 2 | Agilent | Element 2        |  |
| MDL (pg/L) | 1.1                             | 0.7       | 3.8     | 1.5              |  |



## Methyl Hg in Standard Reference Materials

|         | Certified Value (µg/g) | AFS (µg/g)        | ICP-MS (µg/g)     |
|---------|------------------------|-------------------|-------------------|
| TORT -2 | $0.152 \pm 0.013$      | $0.143 \pm 0.007$ | $0.152 \pm 0.003$ |
| DOLT-4  | $1.33 \pm 0.12$        | $1.21 \pm 0.01$   | $1.34 \pm 0.017$  |
| DORM-2  | $4.47 \pm 0.32$        | $4.04 \pm 0.05$   | $4.23 \pm 0.063$  |

# n-propyl Hg

#### Packed column GC



1 ng  $CH_3Hg$ ,  $C_3H_7Hg$ 

Capillary GC: Tresolution and retention time

V Gradient heatingV Higher theoretical plates



#### **GC** parameters

Column

Agilent 6890N GC

Inlet mode Splitless

Agilent HP-1Megabore 0.53mm ID

GC flowrate 15 mL/min

#### Configuring MERX-M to capillary GC with AFS/ICP-MS detection



Trigger out from MERX to capillary GC and ICP-MS

#### Capillary GC heating program



#### Trace – Level Automated Mercury Analysis

#### High MW Hg species



#### **Method Detection Limits**

#### EPA recommends MDL of 20 pg/L

|              |     | Methyl Hg Propyl H |      |
|--------------|-----|--------------------|------|
|              |     | pg/L               | pg/L |
| packed GC    | AFS | 1                  | 6    |
|              | ICP | 1                  | 6    |
| capillary GC | AFS | 6                  | 13   |
|              | ICP | 1                  | 2    |

#### Carryover



### Summary:

- 1. Automated system achieved MDL of < 2 pg/L, reducing analyst time from 8 hrs. for a 30 sample run to 2 hrs. for a 72 sample run.
- 2. Connection to ICP-MS achieved similar MDL as AFS, and enabled the use of isotope dilution.
- 3. Capillary GC decreased run time (4 min) relative to packed GC (10 min) for high MW weight Hg species (propyl Hg).

Taylor et al., Analytical Methods 2011

