Energy Opportunity, Environmental Issues and Monitoring

Al Verstuyft Ph.D.,
Al Verstuyft Consulting LLC

Do Not Drink This Water!

Shale Gas

-Introduction to the technology

- Horizontal Drilling
- Hydraulic Fracturing
- Environmental Issues
 - Water Resources
 - Chemical Exposures Water, Air, Waste & Radioactivity
 - Safety Culture
- Monitoring: Value of Measurement/Testing

"Gas Equivalent of Two Saudi Arabias!"

Rig Operation

Basic Well Structure

NATURALLY OCCURRING SUBSTANCES THAT MAY BE FOUND IN HYDROCARBON-CONTAINING FORMATIONS

Type of Contaminant Example(s)

Formation fluid Brine^a

Gases Natural gas^b (e.g., methane, ethane),

carbon dioxide, hydrogen sulfide,

nitrogen, helium

Trace elements Mercury, lead, arsenic^c

Naturally occurring Radium, thorium, uranium^c

radioactive material

Organic material Organic acids, polycyclic aromatic

hydrocarbons, volatile and semi-volatile

organic compounds

Chemical Used in Hydraulic Fracturing

Table 1. Chemical Components Appearing Most Often in Hydraulic Fracturing Products Used Between 2005 and 2009				
	No. of			
	Products			
	Containing			
Chemical Component	Chemical			
Methanol (Methyl alcohol)	342			
Isopropanol (Isopropyl alcohol, Propan-2-ol)	274			
Crystalline silica - quartz (SiO2)	207			
Ethylene glycol monobutyl ether (2-butoxyethanol)	126			
Ethylene glycol (1,2-ethanediol)	119			
Hydrotreated light petroleum distillates	89			
Sodium hydroxide (Caustic soda)	80			

AN EXAMPLE OF THE VOLUMETRIC COMPOSITION OF HYDRAULIC FRACTURING FLUID

Componen	t Example Compound(s)	Purpose	Percent Composition (by Volume)	Volume Chemical (Gallons)a
Water		Deliver proppant	90	2,700,000
	Cilian amounts and	• • •		• •
Proppant	Silica, quartz sand	Keep fractures open to allow gas flow out	9.5	285,300
Acid	Hydrochloric acid	Dissolve minerals, initiate cracks in the ro	ck 0.1	23 3,690
Friction reducer	Polyacrylamide, mineral oil	Minimize friction between fluid and the p	ipe 0.0	2,640
Surfactant	Isopropanol	Increase the viscosity of the fluid	0.0	85 2,550
Potassium	chloride	Create a brine carrier fluid	0.0	6 1,800
Gelling age	nt Guar gum, hydroxyethyl cellulose	Thickens the fluid to suspend the proppar	nt 0.0	56 1,680
Scale inhib	itor Ethylene glycol	Prevent scale deposits in the pipe	0.0	43 1,290
pH agent	Sodium or potassium carbonate	Maintain the effectiveness of other comp	onents 0.0	11 330
Breaker	Ammonium persulfate	Allow delayed breakdown of the gel	0.0	1 300
Crosslinker	Borate salts	Maintain fluid viscosity as temperature in	creases 0.0	07 210
Iron contro	l Citric acid	Prevent precipitation of metal oxides	0.0	04 120
Corrosion inhibitor	N,N-dimethyl formamid	le Prevent pipe corrosion	0.0	02 60
Biocide	Glutaraldehyde	Eliminate bacteria	0.0	01 30

Methane in Well Water

Shortcomings from the Duke Study— Lockhaven

 Study conclusion: A trend of high methane concentrations in "active" water wells and low concentrations in "nonactive" wells

Table 1. Mean values \pm standard deviation of methane concentrations (as milligrams of CH₄ L⁻¹) and carbon isotope composition in methane in shallow groundwater δ^{13} C-CH₄ sorted by aquifers and proximity to gas wells (active vs. nonactive)

Water source, n	milligrams CH ₄ L ⁻¹	δ^{13} C-CH ₄ , ‰
Active Lockhaver, 7	50.4 ± 36.1	-40.7 ± 6.7

No nonactive wells were sampled.

Sample Locations

Source: The Duke Study. Osborne et al. (2011)

Methanogenesis vs Thermogenesis

Methanogenesis vs Thermogenesis

Shortcomings from the Duke Study—Lockhaven

 Study conclusion: The thermogenic gas in the water wells is consistent with middle devonian [Marcellus]

Sample Locations

Source: The Duke Study. Osborne et al. (2011)

Confidential information of Exponent not intended for distribution to third parties; do not distribute to other organizations.

Comparison of Major Anions and Isotopes In Drinking-Water Wells

	Active		Nonactive	
	Lockhaven formation $N = 8$	Catskill formation $N = 25$	Catskill formation $N = 22$	Genesee group N = 12
Alkalinity as HCO ₃ ,				
mg L ⁻¹	285 ± 36	157 ± 56	127 ± 53	158 ± 56
mM	$[4.7 \pm 0.6]$	$[2.6 \pm 0.9]$	$[2.1 \pm 0.9]$	$[2.6 \pm 0.9]$
Sodium, mg L ⁻¹	87 ± 22	23 ± 30	17 ± 25	29 ± 23
Chloride, mg L ⁻¹	25 ± 17	11 ± 12	17 ± 40	9 ± 19
Calcium, mg L ⁻¹	22 ± 12	31 ± 13	27 ± 9	26 ± 5
Boron, μg L ⁻¹	412 ± 156	93 ± 167	42 ± 93	200 ± 130
δ ¹¹ B ‰	27 ± 4	22 ± 6	23 ± 6	26 ± 6
²²⁶ Ra, <i>p</i> Ci L ⁻¹	0.24 ± 0.2	0.16 ± 0.15	0.17 ± 0.14	0.2 ± 0.15
δ ² H, ‰, VSMOW	-66 ± 5	-64 ± 3	-68 ± 6	-76 ± 5
δ ¹⁸ O, ‰, VSMOW	-10 ± 1	-10 ± 0.5	-11 ± 1	-12 ± 1

Monitoring

Key Points

- Using analytical \$\\$\$ wisely to get right
 balance of tests type and frequency
- Designing a monitoring program to anticipate emerging environmental regs!
- Ensuring any data passes scrutiny
- Providing legally defense reports.

Program Management Considerations

- Consistent analytical methods and reporting throughout the the complete cycle of well
 - Suitable for all matrices (frac fluid, flowback water, produced water, GW, SW, DW)
 - Allows for direct comparison of results through out the life of the well
 - Maintain consistent reportling limit and DL

Components of Quality Program

- Quality Assurance Project Plan (QAPP)
- Quality Control specific compounds of analytical process that collectively ensures test conformance to set standard limits
- Matrix specific QC limits based on validation of QC elements (LCS, Blanks, MS/MSD, calibration verification, MDL verification)
- Control limits for each QC item report the 95% (2 sigma) outcome on client reports.

Takes Aways!

- Poor casing completion including cementing can allow methane migration into water
- No frac fluids in drinking water have been reported
- Frac fluids, produced water and flow back waters pose analytical challenges
- Technically sound and legally defensible monitoring programs are needed

References and Acknowledgements

http://water.epa.gov/type/groundwater/uic/class2/hydraulicfracturing/index.cfm

Chemical Used in Hydraulic Fracturing 18411

 $\frac{http://democrats.energycommerce.house.gov/sites/default/files/documents/Hydraulic\%20Fracturing\%20Report\%204.18.11.pdf$

Insiders Sound an Alarm Amid a Natural Gas Rush, I. Urbina, N.Y. Times 25 June 2011, http://www.nytimes.com/interactive/us/DRILLING DOWN SERIES.html

The Fact About Fracking, Wall Street Journal 25 June 2011 Methane Contamination of Drinking Water Accompanying Gas-Well Drilling and Hydraulic Fracturing, S.G. Osborn, et.al, Proceedings of the National Academy of Sciences, www.pnas.org/cgi/doi/10.1073/pnas.1100682108

Research and Policy Recommendations for Hydraulic Fracturing and Shale-Gas Extraction, R.B. Jackson, et.al., Center on Global Change, Duke University, Durham, N.C.; <u>Jackson@duke.edu</u>

Methane Fouls Well Water, Chemical & Engineering News, 16 May 2011

http://en.wikipedia.org/wiki/Hydraulic_fracturing

http://www.nytimes.com/interactive/2011/02/27/us/fracking.html interactive 2/26/11

http://www.nytimes.com/interactive/us/natural-gas-drilling-down-documents-5.html#document/p41/a21596

Gasland NOW on PBS 26/3/2010, http://www.pbs.org/now/shows/613/index.html

Disclosure & Disclaimer

The Views Expressed In this Presentation

DO NOT represent those of my former employer

Chevron Corporation or the American Petroleum

Institute for whom I consult.

Questions & Answers

