Making Tube Sampling Easy: the Development of a New Type of "Grab Sampler "

Nicola Watson nwatson@markes.com

National Environmental Monitoring Conference, Bellevue, WA, August 2011

Agenda

- Overview of sample collection and analysis
 - Focus canister sampling
 - Focus Sorbent tubes
- Objections against sorbent tubes
- Development of an easy sampling device
 - Synergy with Time-of-Flight detectors

The Thermal Desorption Process

Canister analysis methods (e.g. US EPA TO-15)

Method summary

- Grab sampling using canisters is easy, TWA monitoring is not
- Samples may be stored for up to 30 days
- A small volume of air from the canister (typically ~500 mL) can be introduced straight to the focusing trap of the desorber
- Trapping conditions are set such that water is selectively eliminated during the trapping process.
- Analysis by GC/MS in scan or SIM mode

'Air toxics' in canisters: US EPA Method TO-15

44

45

46

47

48

43 Methyl n-butyl ketone

Chlorobenzene

Xvlene

Xvlene

1,2-Dibromoethane

Dibromochloromethane

Cis-1,2-Dichloroethylene

Methyl ethyl ketone

1,1,1-Trichloroethane

Ethyl acetate

Chloroform

Tetrahvdrofuran

22

23

24

25

26

27

1 Propylene

- 2 Dichlorodifluoromethane
- 3 1,2-Dichlorotetrafluoroethane
- 4 Methyl chloride
- 5 1,2-Dichloroethane
- 6 1,3-Butadiene
- 7 Vinyl chloride
- 8 Methyl bromide (bromomethane)
- 9 Chloroethane
- 10 Trichlorotrifluoroethane (Freon[®] 113)
- 11 Ethanol
- 12 1,2,-Dichloroethylene
- 13 1,1,2-Trichlorotrifluoroethane
- 14 Acetone
- 15 Carbon disulfide
- 16 Isopropyl alcohol
- 17 Methylene chloride
- 18 Tert-butyl methyl ether
- 19 n-Hexane
- 20 1,1-Dichloroethane
- 21 Vinyl acetate

1 L of a 1 ppb air toxics mix analysed **splitless and cryogen-free** using UNITY-CIA 8

Source: TDTS 81

linternationa

MARK

www.markes.com

Air monitoring: Canisters or tubes?

Use canisters:

- 1. For ultra-volatiles
- 2. For non-polar compounds
- 3. Preferably at trace levels
- 4. When you have to

Canister limitations

- 1. Expense (€500 -1000 each)
- 2. Poor recovery of anything higher boiling than Xylene
- 3. Cleaning needs expensive vacuum equipment, at least 3 cleaning cycles and verification with GC/MS

Canisters or tubes?

	Tubes	Canisters
Perception	World-wide acceptance	Gold standard for US ambient air market
Applications	Ambient air, indoor air, vapor intrusion, industrial hygiene Material emissions Food & flavor Chemical weapons	Ambient air, indoor air, vapor intrusion, emergency response
Handling	Light weight for personal monitoring and general ease of use	Larger and heavier; more costly to ship
Sampling	$\rm C_{3^{-}}$ $\rm C_{40}$ Concentration range ppt to %	C_2 - C_{10} Concentration range ppt to low ppm
Cleaning	Analytical process automatically cleans tube for re-use	Canister cleaning requires separate equipment as additional step prior to background certification and sampling.
Cost	\$50 – \$130 each	\$200 - \$700 each

Profiles of soil gas contaminated with kerosene obtained using:

a) canister sampling and TO-15 analysis (blue)

b) sorbent tube sampling with TO-17 analysis (red)

Data courtesy of H. Hayes, Air Toxics

Active (Pumped) Sampling

- Pump air through sorbent tube
- Flow Rate = 20 100 ml/min
- Volume = 500 ml 100 L
- Much faster technique compared to diffusive sampling
- Important do not exceed breakthrough volume for a compound on a given sorbent

Tube Based Thermal Desorption – An Overview of the process

Tube Based Thermal Desorption

Sample passes onto the sorbent

Compounds of interest are adsorbed on the sorbent surface

Tube Based Thermal Desorption

Air Monitoring - Pumped

Sorbent selection for both tubes and focusing trap are very important

Semi volatile compounds - Weak sorbent

Helps prevent retention of unwanted compounds

Very volatile compounds - Strong

sorbent Prevents breakthrough of light compounds

Sorbent selection

The sorbent(s) selected must quantitatively retain the compounds of interest from the volume of air / gas sampled **and** must then release those compounds as efficiently as possible during the desorption process.

Sorbent selection principally depends upon the volatility of the analyte(s) concerned –*the more volatile the analyte to be trapped, the stronger the sorbent must be.*

Common Sorbents

Sorbent Name	Volatility Range
Quartz wool / silica beads	C ₃₀ - C ₄₀
Tenax TA	C ₇ - C ₃₀
Carbograph 2TD	C ₈ - C ₂₀
Carbograph 1TD	C _{5/6} - C ₁₄
Carbopack X	C _{3/4} - C _{6/7}
UniCarb	C ₃ - C ₈
Carboxen 1000	C ₂ -C ₅
Carbosieve SIII	C ₂ -C ₅

Water retention

Air Monitoring - Pumped

What if you have a wide range of compounds you wish to trap?

Answer: Use multiple sorbent beds

'Air toxics' on sorbent tubes: US EPA Method TO-17

1 Propylene

- 2 Dichlorodifluoromethane
- 1,2-Dichlorotetrafluoroethane 3
- 4 Methyl chloride
- 5 1,2-Dichloroethane
- 1,3-Butadiene 6
- 7 Vinyl chloride
- 8 Methyl bromide (bromomethane)
- 9 Chloroethane
- Trichlorotrifluoroethane (Freon[®] 113) 10
- Ethanol 11
- 1,2,-Dichloroethylene 12
- 13 1,1,2-Trichlorotrifluoroethane
- 14 Acetone
- 15 Carbon disulfide
- 16 Isopropyl alcohol
- 17 Methylene chloride
- 18 Tert-butyl methyl ether
- 19 n-Hexane
- 20 1,1-Dichloroethane
- 21 Vinyl acetate

- 22 Cis-1,2-Dichloroethylene
- 23 Methyl ethyl ketone
- 24 Ethyl acetate
- 25 Tetrahydrofuran
- Chloroform 26
- 27 1,1,1-Trichloroethane
- 28 Cyclohexane
- 29 Carbon tetrachloride
- 30 Benzene
- 31 n-Heptane
- 32 Trichloroethylene
- 33 1,2-Dichloropropane
- 34 1,4-Dioxane
- 35 Bromodichloromethane
- 36 Trans-1,3-dichloropropene
- 37 Methyl isobutyl ketone
- 38 Toluene
- 39 Cis-1,3-Dichloropropene
- 40 Trans-1,2-Dichloroethylene
- 41 1,1,2-Trichloroethane
- 42 Tetrachloroethylene

- Methyl n-butyl ketone 43
- 44 Dibromochloromethane
- 1,2-Dibromoethane 45 46 Chlorobenzene
- Xy lene
- 47 48 Xylene
- 49 **Xylene**
- 50 Styrene
- 51 Tribromomethane
- 1,1,2,2-Tetrachloroethane 52
- 53 1,2,4-Trimethylbenzene
- 54 1,3,5-Trimethylbenzene
- 55 1-Ethyl-4-methyl benzene
- 56 Ethylbenzene
- 1,2-Dichlorobenzene 57
- 58 1,3-Dichlorobenzene
- 59 Chloromethylbenzene (alpha)
- 1,4-Dichlorobenzene 60
- 61 1,2,4-Trichlorobenzene
- 62 Hexachloro-1,3-butadiene

Objections

• What about breakthrough?

Breakthrough

Objections

- What about breakthrough?
- Capping and secure shipment of the tubes.

Tube Capping

SafeLok Tubes*

- Reduces risk of contamination
- Prevents necking caused by over tightening
- Facilitates pumped sampling at low flow rates (< 1 ml/min)
- Safer to handle tubes used to collect toxic compounds
- Same mass of sorbent and same external dimensions as standard tubes

Objections

- What about breakthrough?
- Capping and secure shipment of the tubes.
- Calibration of the pump before sampling.

Easy-VOC – Pumped tube sampling made easy

- Grab sampling for sorbent tubes: Reliable sampling of 50 or 100 ml volumes (or multiples of same)
- Kit includes: hand pump, Safelok tubes and caps.
- Main features
 - Ease of use great for inexperienced personnel
 - Humidity effects Negligible
 - Breakthrough? Minimised
 - Use of SafeLok tubes and push on caps simplifies operation and prevents over tightening of storage caps

Easy-VOC - For soil gas, workplace air & stack gas.

Also the perfect complement to high sensitivity GC detectors

Comparisons of Easy-VOC with standard pumped sampling

Comparison with FLEC constant flow pump (Black) and Hand
IARKES pump (Red & Blue) – equal performance
ternational

Extending the volatility range

Smaller volume less chance of breakthrough, so lighter compounds can be retained.

Application examples; High/Low concentration

Sample security using sample re-collection

Stage 1: Primary (tube) desorption with optional (inlet) split

The heated valve isolates the TD system allowing method compliance: leak testing, backflush trap desorption, purge to vent, overlap mode, *etc.*

Sample security using sample re-collection

Stage 2: Secondary (trap) desorption with optional (outlet) split

Using Re-collection (SecureTD-Q[™])

MARKES international

NB: ASTM Method D6196 references quantitative re-collection for validation

Re-analysis of low concentration sample

The 4 ppb standard was re-collected for re-analysis using SIM detection conditions.

а

0

BenchTOF-dx:

Clearer, Accurate, Selective, and Sensitive

What does BenchTOF-dx offer?

- Spectral Accuracy
- Sensitivity
- Clarity
- Selectivity

Previous quality standard of HCB

Today, a new standard in GC/TOF spectral fidelity ALMSCO

HCB spectrum from an extract of hops

Data courtesy of Prof H Nitz, Department of Brewing Technology and Quality, Weihenstephan, Technical University Munich

- Spectral Accuracy
- Sensitivity
- Clarity
- Selectivity

Sensitivity

- A quadrupole analyser is a mass filter
 - Scanning is extremely wasteful of ions formed in the source
- Quad analyser duty cycle is very low in scan mode
 - < 0.5% for scanning 45-250 amu (VOCs)</p>
 - < 0.2% for scanning 45-500 amu (SVOCs)</p>
 - < 0.1% for high mass applications (e.g. PBDEs)
- A TOF analyser does not filter
 - >90% ions injected into analyser can be detected
 - This is Comprehensive MS, not Wasteful MS

Sensitivity

- S/N values 800:1 for 1pg OFN from full range spectra (1-1000 amu)
- Enhanced sensitivity is a function of direct (axialzion extraction (c.f oa-TOFs)
- High ionisation efficiency/ transmission rates
- Femtogram-level detection

OFN 13 C rel ab~ 11% 12 C 12 C OFN= 1pg, 13 C OFN= 110fg 13 C S/N~ 108:1(MDL ~ 3fg)

OFN ¹³C isomer S/N (RMS) 80:1

50 mL sample volume near diesel car exhaust

500 mL sample of 4 ppb Ozone precursor standard

www.markes.com

Abundance

www.markes.com

200 mL of ambient rural air

BenchTOF data, Quad data Full scan and **SIM** (ten ions) n a а o n

e r

www.markes.com

200 mL of ambient rural air

ernation

Quad data(x 500) Full scan and SIM (ten ions)

Summary

- Sampling on to sorbent tubes has been simplified
 - No need to worry about
 - Breakthrough
 - Calibration
 - Training operators
- Sample volumes between 50 ml and 500 mL can be taken to deal with high and low concentration samples
- High humidity environments take small sample volumes; less water sampled
- Combined with BenchTOF-dx provides SIM or better LOD's but with full spectral information.

Any Questions?

www.markes.com