

# Selenium Speciation in Aqueous Matrices and Its Impacts on the Accuracy of Compliance Monitoring Measurements

Ben Wozniak (ben@appliedspeciation.com) Russell Gerads (russ@appliedspeciation.com) Hakan Gürleyük (hakan@appliedspeciation.com)



APPLIED SPECIATION www.appliedspeciation.com

info@appliedspeciation.com

## **Overview of Selenium Speciation**

#### Significance of Se in the Environment

- Effects, Sources, Regulations
- Selenium Species in Waters
  - Methods, Common Species, and Often Overlooked Species

#### Impact of Se Speciation on the Accuracy of Total Se Measurements

Selected Case Studies and Solutions

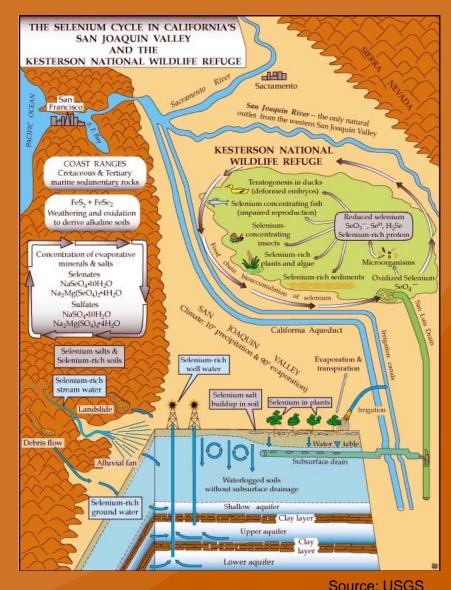


## Why is Selenium Important?

- Se is an essential trace nutrient
- ♦ Selenoamino acids → Selenoproteins → Antioxidant enzymes
- Deficiencies in humans have been correlated with hypothyroidism, heart issues, and increased cancer rates
- May provide protection against As and Hg toxicity



# Why is Selenium Important?


- Se is toxic is high concentrations
- Threshold between deficiency and toxicity is low (~1 order of magnitude)
- Effects in wildlife include decreased reproductive success
- Effects in humans include skin/hair changes and neurological symptoms
- Toxic effects mediated by nonspecific substitution of Se for S in proteins





# **Sources of Selenium**

- Naturally occurring in soils
  CA, SD, WY, CO
- Mining-impacted areas
- Coal Combustion
- FGD wastewater, fly ash
- Oil Refining





# **Selenium Regulations**

US Chronic Freshwater Criterion historically has been 5µg/L

- Based on toxicity to fish observed at Belews Lake, NC in the late 1970s
- USEPA proposed a tissue-based standard in 2004
  - Tissue criterion reflects site-specific chemical and biological factors that can control selenium bioaccumulation
  - Can be converted to water-based criterion using a sitespecific bioaccumulation factor
- Many point sources are still regulated based on aqueous concentrations of total Se



# Why Speciate Selenium?

- Regulations may be based on total Se concentrations, but the molecular forms present will influence the toxicity, fate and transport, and treatability
- Performance of treatment systems determined by the species of selenium present
  - Iron Co-precipitation
  - Biological Treatment



# **Selenium Speciation Methods**

Non-chromatographic
 HG-AAS or HG-AFS

Relies on reactive chemistry; can typically only differentiate between inorganic and reduced selenium species

Chromatographic separation...

- IC, LC, CE, GC
- …followed by detection
  ICP-MS, MS/MS

Selection of hyphenated method can depend on molecular form of Se



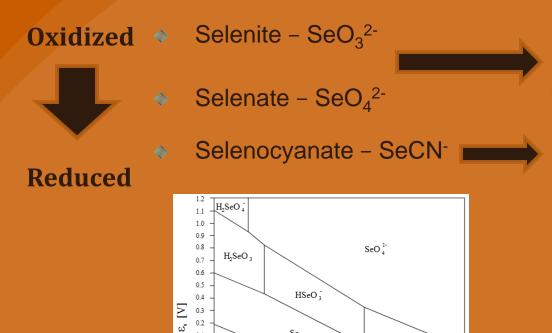
# **Selenium Speciation Methods**

 Ion Chromatography Inductively Coupled Plasma Mass Spectrometry (IC-ICP-MS)

- Can separate and quantitate ionic forms of selenium
- Low detection limits (ng/L)
- Monitor multiple selenium isotopes for confirmation purposes
- Monitor other elements for identification
- Quantitation generally is species independent



## **Common Aqueous Selenium Species**


SeO 2

11 12 13

HSe

pН

10



Se

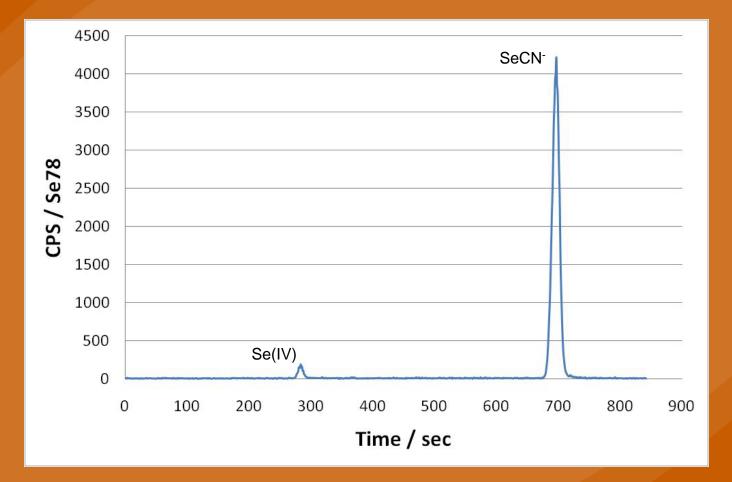
0.2

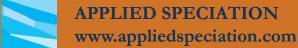
0.1 0

-0.1 -0.2 -0.3

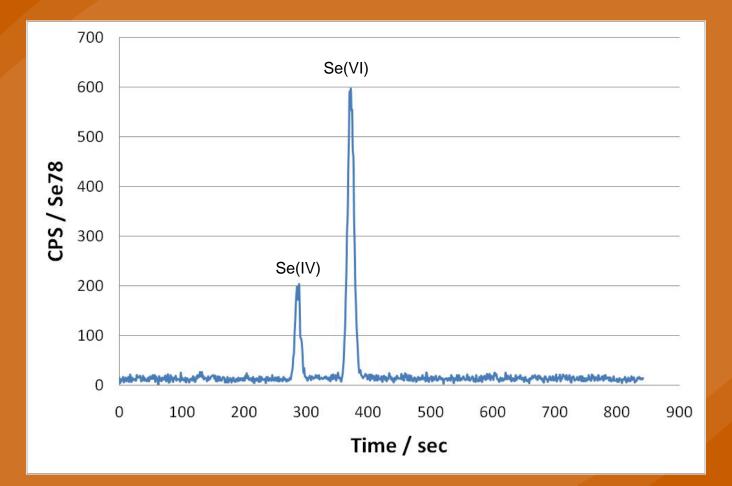
-0.4

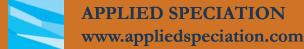
-0.5 -0.6 -0.7 -0.8 H<sub>2</sub>Se


2 1

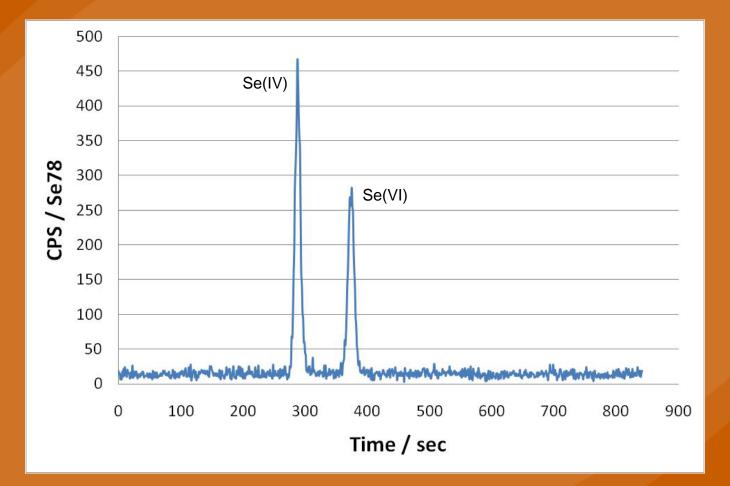

Most common aqueous species

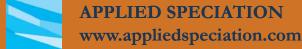
Typically from oil refineries, but also found in some FGD wastewaters; can be biologically generated



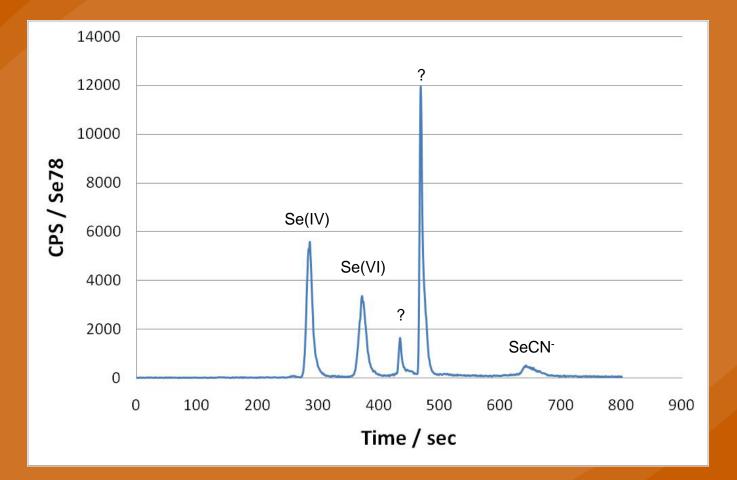


### **Speciation of a Refinery Wastewater**

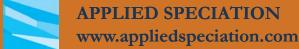




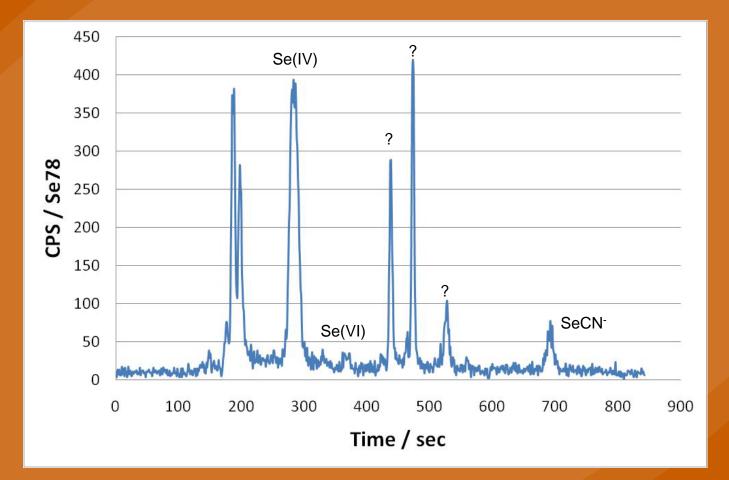


#### **Speciation of a Surface Water**







#### **Speciation of a FGD Wastewater**






#### **Speciation of a FGD Wastewater**





#### **Speciation of a Bioreactor Effluent**

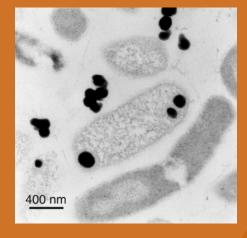




www.appliedspeciation.com

**APPLIED SPECIATION** 

#### **Less Common Selenium Species**




- Selenocyanate SeCN<sup>-</sup>
- Elemental Selenium Se<sup>o</sup>
- Selenosulfate SeSO<sub>3</sub><sup>2-</sup>
- Dimethylselenide (DMSe) (CH<sub>3</sub>)<sub>2</sub>Se
- Dimethyldiselenide (DMDSe) (CH<sub>3</sub>)<sub>2</sub>Se<sub>2</sub>
- **Reduced** Other organoselenium species

## **Elemental Selenium**

Can form via reduction of either selenite or selenate by a diverse array of bacteria

- Formation of Se<sup>0</sup> is the basis of many biological and chemical (e.g., iron cementation) treatment systems for selenium
- Can be present in different forms (allotropes) and sizes



Oremland *et al.*, *Appl. Environ. Microbiol.*, **2004**, 70, 52-60.



#### **Elemental Selenium**

- Colloidal Se<sup>0</sup> can pass though standard 0.45µm filters
- Colloidal Se<sup>0</sup> does
  not elute from
  standard IC
  columns





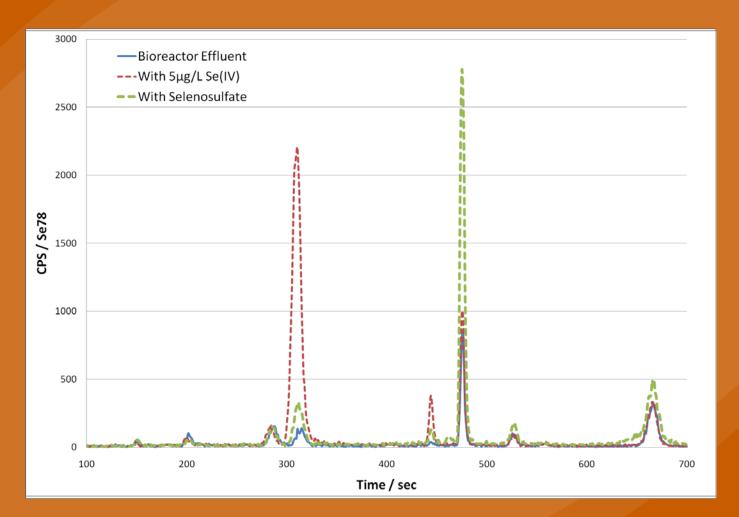
#### **Less Common Selenium Species**

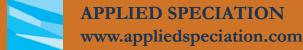


- Selenite  $SeO_3^{2-}$
- Selenocyanate SeCN<sup>-</sup>
- Elemental Selenium Se<sup>0</sup>
- Selenosulfate SeSO<sub>3</sub><sup>2-</sup>
- Dimethylselenide (DMSe) (CH<sub>3</sub>)<sub>2</sub>Se
- Dimethyldiselenide (DMDSe) (CH<sub>3</sub>)<sub>2</sub>Se<sub>2</sub>
- **Reduced** Other organoselenium species

#### Selenosulfate

Typically found in reducing environments


♦ Can form via reaction of elemental selenium with sulfite:
 ♦ Se<sup>0</sup> + SO<sub>3</sub><sup>2-</sup> → SeSO<sub>3</sub><sup>2-</sup>


Found in some FGD wastewaters, esp. natural or inhibited oxidation systems:

♦ e.g., SO<sub>2</sub> + Ca(OH)<sub>2</sub> → CaSO<sub>3</sub> + H<sub>2</sub>O



# Identification of SeSO<sub>3</sub><sup>2-</sup> via IC-ICP-MS





#### **Less Common Selenium Species**



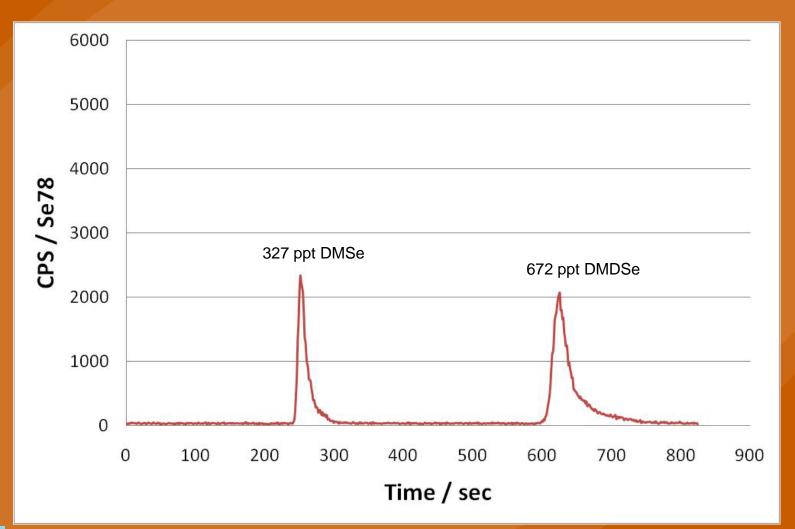
- Selenite SeO<sub>3</sub><sup>2-</sup>
- Selenocyanate SeCN<sup>-</sup>
- Elemental Selenium Se<sup>o</sup>
- Selenosulfate SeSO<sub>3</sub><sup>2-</sup>
- Dimethylselenide (DMSe) (CH<sub>3</sub>)<sub>2</sub>Se
- Dimethyldiselenide (DMDSe) (CH<sub>3</sub>)<sub>2</sub>Se<sub>2</sub>
- **Reduced** Other organoselenium species

## **DMSe and DMDSe**

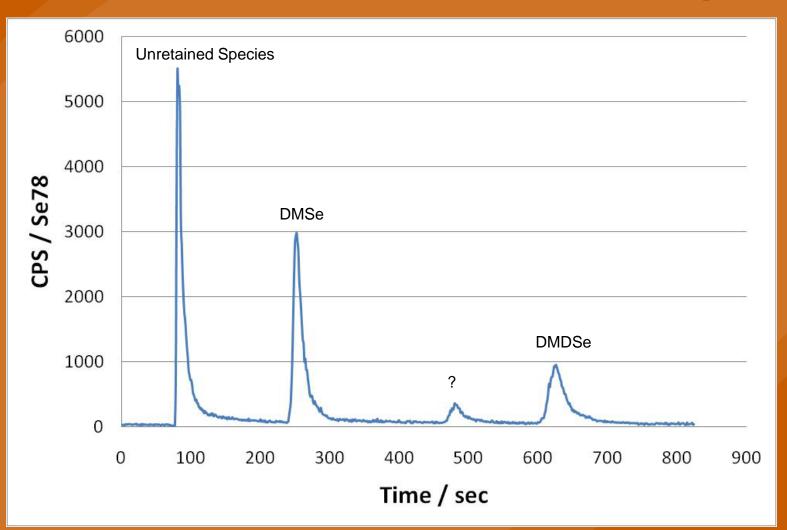
Volatile, less polar selenium species

- Product of biological reduction processes occurring in water and soil/sediment
  - Great Salt Lake, Utah
  - San Joaquin Valley
  - Biological treatment systems

Do not elute from standard IC columns, so a different analytical method is required




#### **RP-ICP-MS**


- Reversed-Phase Inductively Coupled Plasma Mass Spectrometry (RP-ICP-MS)
- Uses a non-polar stationary phase (e.g., C-8 or C-18 modified silica) instead of an anion or cation column for species retention
- Ionic interactions between selenium species and chromatographic column are limited (without mobile phase modifiers)
- Low detection limits (ng/L)
- Can require high concentrations of organic solvents to elute highly retained organic selenium species



#### **RP-ICP-MS of DMSe and DMDSe**



### **RP-ICP-MS of a Wetland Sample**



# **Promulgated Methods for Selenium Analysis of Aqueous Matrices**

- Commonly employed methods include the 200 series, 1638, and the 3000/6000 series
- Samples are to be collected into bottles (typically HDPE)
- Dissolved Se:
  - Samples require filtration followed by preservation to pH < 2</li>
  - Samples *do not* require digestion, unless precipitates form
- Total Se:
  - Samples require preservation to pH < 2</li>
  - Samples require digestion, typically with nitric and hydrochloric acids
  - Aliquot of sample usually is removed from the bottle for digestion



# Identification of a Problem with Promulgated Se Methods

 Discrepancy between Se Speciation results and Total/Dissolved Se concentrations

 Dissolved (filtered) Se concentration greater than Total (unfiltered) Se concentration

Temporally variable Se concentrations




# Identification of a Problem – Case 1

Samples from an oil refinery wastewater treatment plant
 Results:

| Sample Type | Se(IV) | Se(VI) | SeCN    | $\sum$ Species | Total Se |
|-------------|--------|--------|---------|----------------|----------|
| WW Influent | 8.4    | 44.2   | 559     | 611            | 111      |
| WW Effluent | 250    | 39.4   | < 2.0 U | 290            | 340      |

Discrepancy between sum of species and total Se concentrations correlated to high SeCN<sup>-</sup> concentrations



## **SeCN<sup>-</sup>** Decomposition in Acidic Solution

#### SeCN<sup>-</sup> can decompose to elemental selenium under acidic conditions



APPLIED SPECIATION www.appliedspeciation.com  Se<sup>0</sup> can adsorb onto the surface of HDPE bottles

 Aliquoting acidified samples for Total Se analysis can produce biased low Se results!

Solution: Glass
 bottles can
 minimize Se<sup>0</sup>
 adsorption





# Identification of a Problem – Case 2

#### Samples from a WW treatment plant

#### Results:

| Sample Type  | <b>Total Se</b> | Diss Se | Se(IV) | Se(VI) | SeCN     | MeSe(IV) | DMSe | DMDSe     |
|--------------|-----------------|---------|--------|--------|----------|----------|------|-----------|
| Effluent     | 7.21            | 37.5    | 2.98   | 2.88   | < 0.50 U | 0.62     | 1.68 | < 0.033 U |
| Holding Pond | 16.4            | 38.4    | 9.01   | 3.55   | < 0.50 U | 1.54     | 1.35 | < 0.033 U |

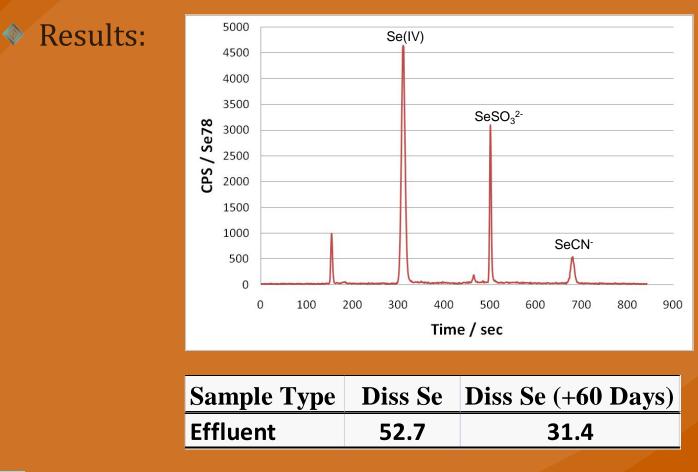
| Sample Type  | Total Se - Diss Se | Difference / [DMSe] |  |  |
|--------------|--------------------|---------------------|--|--|
| Effluent     | 30.3               | 18.1                |  |  |
| Holding Pond | 22.0               | 16.3                |  |  |

Volatility of DMSe results in increased mass transport to the plasma during nebulization; therefore, ICP-MS not a speciesindependent method in all cases!



# Identification of a Problem – Case 2b

- Samples from a biological treatment system
- Results:


| Sample Type | Total Se | Diss Se | Diss Se (Digested) |
|-------------|----------|---------|--------------------|
| Influent    | 153      | 155     | -                  |
| Effluent    | 27.5     | 185     | 22.1               |

- Total Se fractions acidified, digested, then analyzed
- Dissolved Se fractions filtered, acidified, and analyzed without digestion
- Solution to volatility problem: Digestion of dissolved Se fractions



# **Identification of a Problem – Case 3**

#### Samples from a biological treatment system





# SeSO<sup>2-</sup> Decomposition in Acidic Solution

- SeSO<sub>3</sub><sup>2-</sup> can decompose to elemental selenium under acidic conditions, similar to SeCN<sup>-</sup>
- Elemental Se can adsorb onto bottle walls and therefore be under-represented when samples are aliquoted for digestion





#### **Implications for Regulatory Compliance**

- Total and Dissolved Se measurements can be significantly biased depending on the Se species present in a sample and their interactions with the sample matrix, applied preservative, and sample container
  - Volatile Se species can produce a high bias if samples are not first digested
  - Reduced Se species can precipitate from solution and adsorb to container walls when samples are acidified in HDPE bottles, producing a low bias



## **Implications for Regulatory Compliance**

- Generating accurate Se results may require deviation from promulgated methods and/or standard laboratory practices
  - Collection of samples into borosilicate glass instead of HDPE
  - Digestion of both unfiltered and filtered fractions
  - More vigorous digestion procedures (closed-vessel) to fully mineralize all species and prevent losses of volatile species



### **Final Thoughts**

These issues will likely only increase in the future due to:

- Increased regulation of the steam electric power industry (Proposed rule due July 2012?)
- The application of more biological treatment systems
  - Not all treatment systems operate the same
  - Not all system operators know how their treatments work
  - Treatment efficiency and species produced can vary over time
- Generation of accurate data requires appropriate sample collection, preservation, digestion, and analysis



#### Acknowledgements

- Staff at Applied Speciation and Consulting:
  - Jacob Meyer, Tyler Kennedy, Matt Sullivan, Tyler Sandum
- Industrial clients who provided samples for these investigations

