

Productivity Enhancements in Microwave Assisted Extractions (EPA Method 3546) Of Semi Volatile Organic Compounds From Environmental Samples

Sumedh Phatak
Milestone Inc

Agenda

- Introduction to EPA 3546
- Conventional Extraction Methods
- Microwave Assisted Extraction
- Data Comparison
- Improvements To Increase Throughput
- Summary
- Q&A

What is EPA Method 3546?

- Method for extracting water insoluble or slightly soluble organic compounds from soils, clays, sediments, sludge and solid wastes.
- Employs closed vessel microwaves to achieve the extraction of analytes at high temperatures and pressures
- Recovery equivalent to Soxhlet extraction (EPA method 3540) with – less solvent, shorter time and better precision in most cases

Typical Parameters – EPA 3546

Application: Soils, Clays, Sediments,
Sludge, Solid Wastes

Sample Size: 2 – 20 g

Solvent Volume: 25 ml

Temperature: 100 – 115 °C

Pressure: 50 – 150 psi

The need for EPA 3546...

- Extraction demands
- Data quality
- Representative sampling
- Productivity enhancement
- Cost effectiveness

Conventional Techniques

Soxhlet:

- Regarded as the standard method
- Inexpensive equipment
- Able to process large amounts of sample
- Separate filtration is unnecessary

Conventional Techniques

Limitations of Soxhlet Extractions:

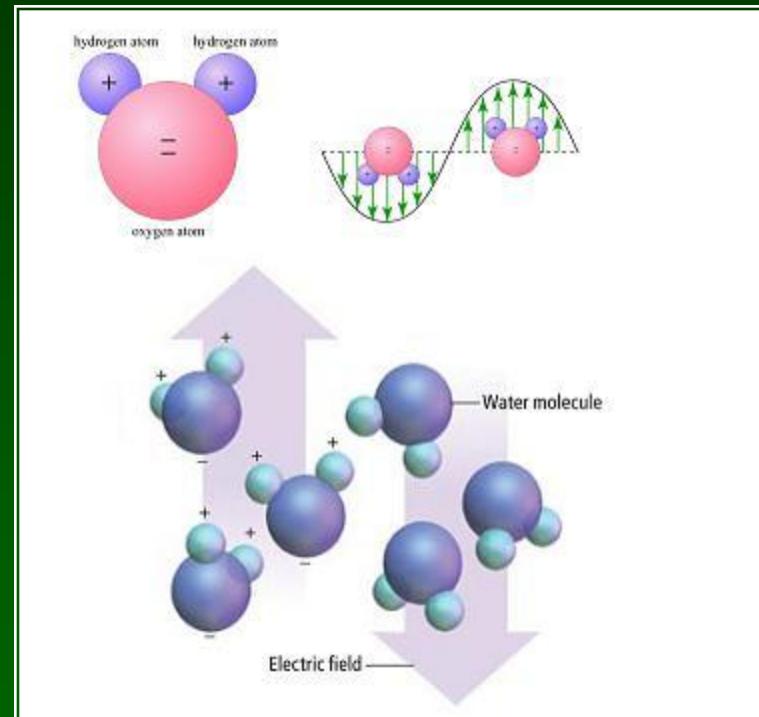
- Long operation times - ~4 – 48 hours
- Large solvent consumption – 200 – 500 ml
- Large operation cost
- Only extraction capabilities
- High exposure to toxic materials

Conventional Techniques

Sonication:

- Fast method – 30 – 60 min
- Inexpensive equipment
- Able to process large amounts of sample
- Matrix Independent

Conventional Techniques


Limitations of Sonication Extractions:

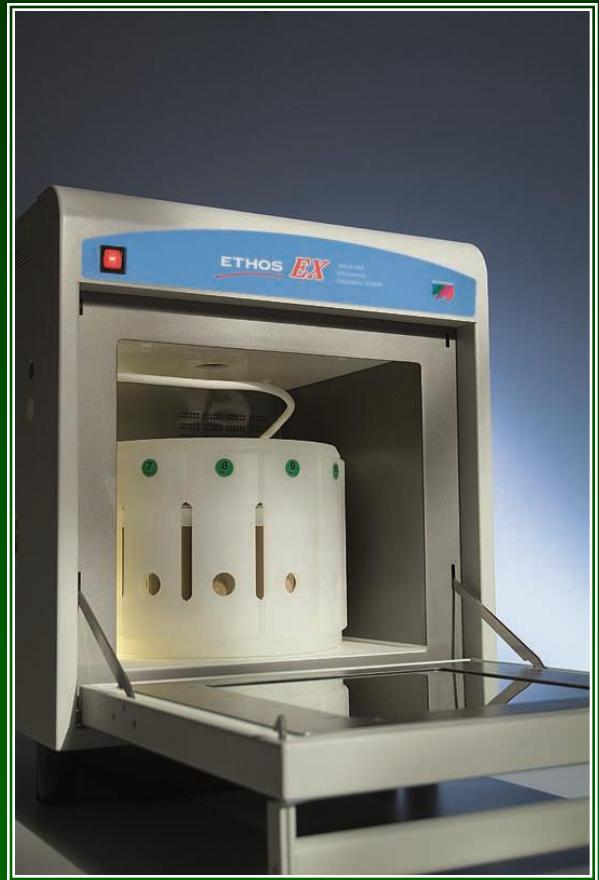
- Large solvent consumption – 200 – 500 ml
- Labor intensive
- Filtration required
- High exposure to toxic materials

Microwave Theory

How Microwaves Work:

- Polar molecules rapidly oscillate with the oscillating electromagnetic field.
- Rotating molecules push, pull, collide other molecules and generate heat

Microwave Extraction


- Specially designed microwaves
- Rotors with multiple vessels
- Samples + mixture of solvents added
- Closed vessels ensure no loss of volatiles
- Concentration
- Analysis

Advantages of Microwave Assisted Extraction

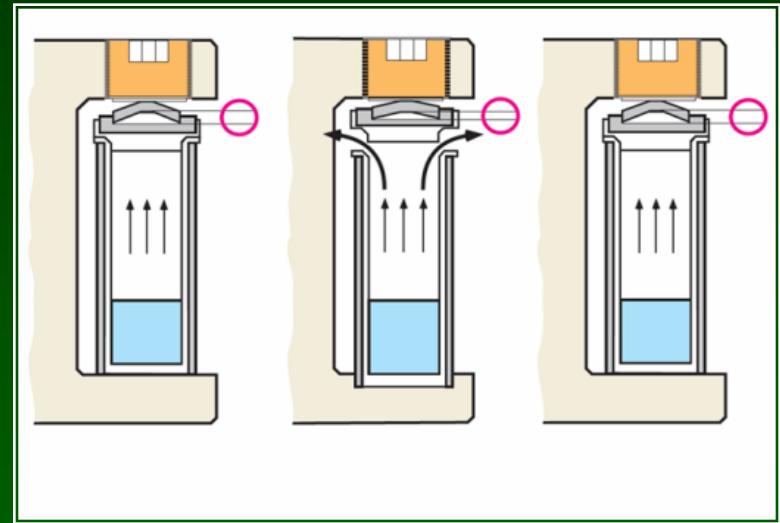
- High throughput
- Reduction of operation time
- Minimum consumption of solvents
- Save of space
- Reduction of operation cost
- No expensive glassware
- Broad range of sample sizes
- Flexible platform (multiple chemistries)
- Conforms with EPA's pollution prevention goals

Milestone's Ethos EX

- Chassis
- Safety features
- Color touch-screen controller
- PID Control

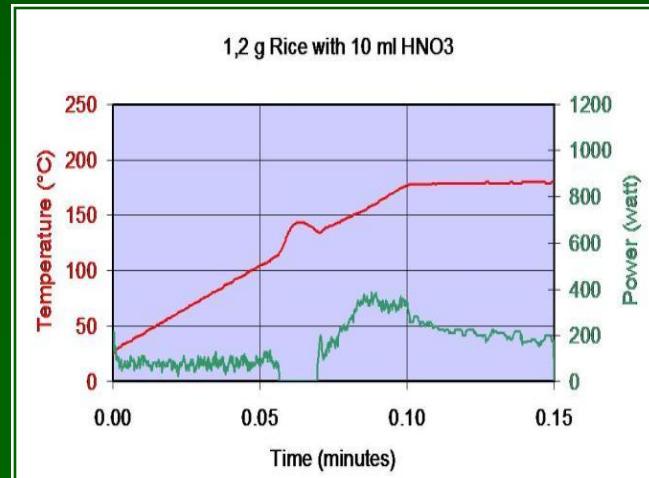
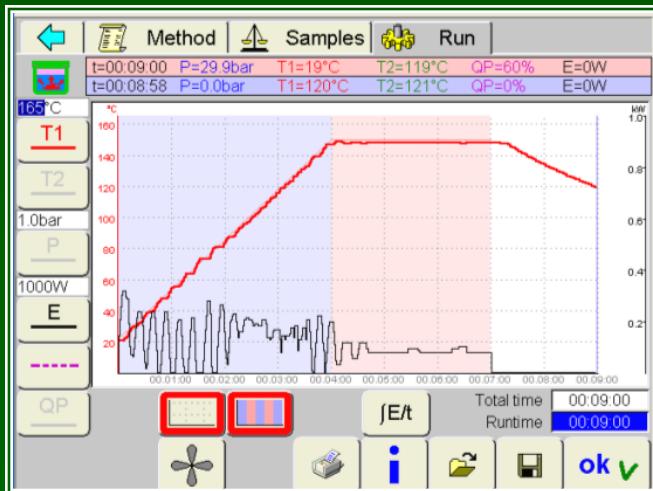
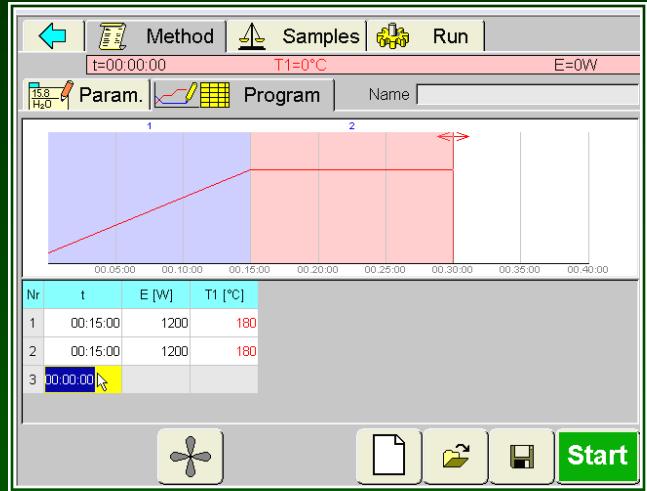
Improvements to Enhance Productivity – Rotors & Vessels

Milestone Ethos EX Rotors - Specifications


SK-10	SK-12	Q-20	PRO-16/24	LVR	MUP-41
Max. temp & pressure Max. Press. 100 bar Max. Temp. 300°C	Max. temp & pressure Max. Press. 35 bar Max. Temp. 300°C	Max. temp & pressure Max. Press. 40 bar Max. Temp. 250°C	Max. temp & pressure Max. Press. 30 bar Max. Temp. 260°C	Max. temp & pressure Max. Press. 10 bar Max. Temp. 200°C	Max. temp & pressure Max. Press. 30 bar Max. Temp. 260°C
Number of Samples 10	Number of Samples 12	Number of Samples 20	Number of Samples 24	Number of Samples 6	Number of Samples 41
Vessel Volume 100 mL	Vessel Volume 100 mL	Vessel Volume 45 mL	Vessel Volume 75 mL	Vessel Volume 270 mL	Vessel Volume 70 mL
Minimum vol. 10 mL	Minimum vol. 10 mL	Minimum vol. 3 mL	Minimum vol. 10 mL	Minimum vol. 10 mL	Minimum vol. 10 mL
Max. sample wt. Up to 20 g	Max. sample wt. Up to 15 g	Max. sample wt. Up to 2 g	Max. sample wt. Up to 15 g	Max. sample wt. Up to 30 g	Max. sample wt. 10 g
Vessel Material TFM	Vessel Material TFM	Vessel Material TFM	Vessel Material TFM	Vessel Material TFM	Vessel Material TFM or PFA
Vessel Technology Vent-and-Reseal	Vessel Technology Vent-and-Reseal	Vessel Technology Vent-and-Reseal	Vessel Technology Vent-and-Reseal	Vessel Technology Vent-and-Reseal	Vessel Technology Self-regulating

MILESTONE
productivity tools

Productivity Enhancement – High Sample Size & Solvent Volume




- Patented by Milestone
- Cap is held in place by a PEEK spring which deforms as pressure pushes the cap upwards
- Overpressure is gently and controllably released
- Pressure is maintained in the vessel even while venting
- No ejection of contents or loss of volatiles

Vent and Reseal Technology

Productivity Enhancement – Temperature Control

- Fiber Optic Probe
- Direct temperature measurement
- PID Control

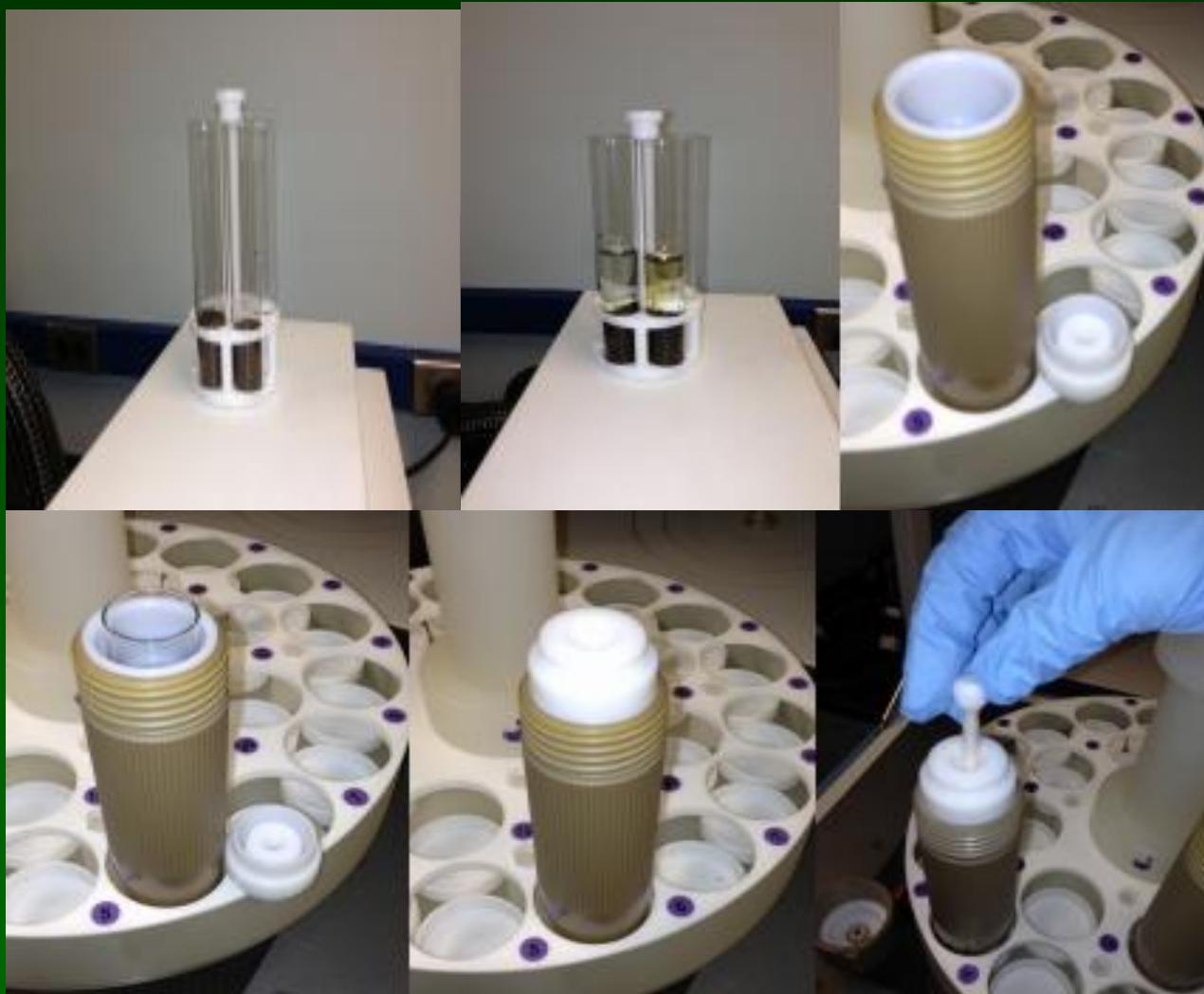
Technology Comparison

Soxhlet vs Microwaves

	Method 3540C		Microwave Extraction	
	12 Samples	1000 Samples	12 Samples	1000 Samples
Labor Cost	\$140	\$11,666	\$41	\$3,383
Solvent Cost	\$108	\$9,000	\$8.40	\$400
Total Cost	\$248	\$20,666	\$49	\$3,783
Total Time Required	316 hours	13,167 hours	3.08 hours	257 hours
Total Solvent Consumed	5.4 L	450 L	420 ml	15.96 L

Data Analysis

- Instrument setup
- 15g of Ottawa Sand
- Disposable Glass inserts were used


Run 1:

- 25ml of 1:1 hexane acetone
- 10 min to 100 °C + 20 min at 100 °C

Run 2:

- 25 ml of 1:1 DCM acetone
- 10 min to 100 °C + 20 min at 100 °C

Further Enhancement – Disposable Glass Vials

MILESTONE
productivity tools

Data Run - 1

- Sample: 15 g soil
- Solvent: 15 ml Hexane + 15 ml Acetone
- Dilution Factor: 1
- Final Volume: 1 ml
- Spikes analyzed in duplicates: Aniline, Phenol, 2-Chlorophenol, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 2-methylphenol, 2-nitrophenol, 2,4-dimethylphenol, 4-chloroaniline, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol, 4-nitrophenol, azobenzene, pentachlorophenol, anthracene, fluoroanthene
- Average % Recovery: 78.98%
- Surrogates analyzed: 2-fluorophenol, phenol d-6, nitrobenzene d-5, 2,4,6-tribromophenol, 4-terphenyl – d14
- Average % Recovery: 85.93%

Data Run - 2

- Sample: 15 g soil
- Solvent: 15 ml Hexane + 15 ml Acetone
- Dilution Factor: 1
- Final Volume: 1 ml
- Spikes analyzed in duplicates: Phenol, 2-Chlorophenol, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 2-methylphenol, 2-nitrophenol, 2,4-dimethylphenol, 4-chloroaniline, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol, 4-nitrophenol, anthracene, fluoroanthene
- Average % Recovery: 75.45%
- Surrogates analyzed: 2-fluorophenol, phenol d-6, nitrobenzene d-5, 2,4,6-tribromophenol, 4-terphenyl – d14
- Average % Recovery: 75.15%

Advantages of Disposable Glass Vials

- No cleaning step required post extraction
- No need to purchase additional rotors
- Clean environment – low blanks
- Comparable or better recoveries
- Inexpensive

Summary

- Microwave extraction offers significant benefits over traditional extraction techniques.
- Modifications and upgrades are made to enhance productivity – Rotor design, safety features, temperature measurement, software
- The use of disposable glass vials further increase the productivity of a lab – no downtime, no cleaning, great results

Thank You!

Q&A