Automated Digestion of Total Nitrogen and Total Phosphorus in Environmental Samples

William Lipps
Ol Analytical

EPA definition of total nitrogen

Measuring organic nitrogen requires a TKN and ammonia analysis

TKN is a "classical" analysis of total nitrogen

- TKN includes
 - Organic Nitrogen
 - Ammonia Nitrogen (NH₃-N)
- TKN does not include
 - Nitrate Nitrogen (NO₃-N)
 - Nitrite Nitrogen (NO₂-N)

Must use 40 CFR Part 136 methods

TKN Methods

- Manual digestion
- Manual distillation
- Nessler, IC, Titration, ISE, phenate

TKN Methods

- Manual digestion
- Automated distillation/diffusion
- Direct Colorimetry

NO3/NO2 –N Methods

IC, Reduction colorimetry

The "classical" Kjeldahl Reactions distilled and titrated ammonia

Digestion

• $H_2SO_4 + 2(NH_2)_2CO -> (NH_4)_2SO_4 + 2CO_2$

Distillation

• $(NH_4)_2SO_4 + NaOH -> NaHSO_4 + H_2O + 2NH_3$

Capture

• $H_2SO_4 + 2NH_3 -> (NH_4)_2SO_4 + H_2O_4$

Titration

• H_2SO_4 + NaOH -> $NaHSO_4$ + H_2O

Present Day TKN methods can either distill (diffuse) or measure NH₄+ in the matrix

Manual Digestion

- $H_2SO_4 + (NH_2)_2CO -> (NH_4)_2SO_4 + 2CO_2$
 - Must use catalyst

Distillation (required for some methods)

• $(NH)_4SO_4 + NaOH -> NaHSO_4 + H_2O + 2NH_3$

Detection

Titration, ISE, manual colorimetry, automated colorimetry

The block digester methods for TKN do not require distillation

- Sodium Citrate is a better complexing agent
- Salicylic acid method
- Blue color measured at 640 660 nm
- Continuous Flow or Discrete Analyzer methods.

Digest multiple samples on a block and analyze them automatically

- Faster than titration
- Results in minutes
- Easy repeat of questionable results
 - Dilute off scale samples
 - No distillation
 - Smaller volumes (25 ml)

Operational Comparison of TKN methods

Manual Digestion & Distillation Followed By:	Require final digest volume	Require final distillate volume
Titration	no	no
Ion Selective Electrode	no	yes
Manual Phenate	no	yes
Automated Phenate	no	yes
Block Digestion		
Automated Salicylate	yes	N/A

Techniques for the analysis of Total Nitrogen (EPA only approves TKN)

Manual Digestion & Distillation Followed By:	MDL (mg/L)
Titration	1.0
Manual Phenate	0.05 ?
Ion Selective Electrode	0.03
Automated Phenate	0.01
Block Digestion	
Automated Salicylate	0.1
Auto-GD/pH colorimetry	0.2
Auto-GD/Salicylate	0.02

Problem -TKN does not measure nitrate, and total nitrogen includes nitrate plus nitrite

Low Recovery of TKN in presence of NO₃-N

Typical N in influent and effluent

	Influent	Effluent
TKN (mg/L)	30	2
NO ₃ -N (mg/L)	0	17
TN (mg/L)	30	19

Minimize digestion time to maximize recovery when nitrate is present

- 1. 25 mL sample
- 2. 10 mL digestion reagent
- 3. 5 stones
- 4. 160° C for 1 hour
- 5. 380° C for 30 minutes
- 6. Cool, rinse sides, cool
- 7. Dilute to 25 mL (or 50 mL)

With EPA allowed method modifications, both ammonia and TKN can be determined with the same CFA method

EPA 351.2 TKN by Gas Diffusion Colorimetry

EPA	Modified	
Direct Colorimetry	Automated Diffusion	
Salicylate	Salicylate	
Tartrate	Citrate	
0.01 – 2.0 ppm	0.01 – 20 ppm	

Low Level Organic Nitrogen Requires a TN analysis, not TKN

$$NO_x-N = NO_3-N + NO_2-N$$

Analysis of Total Nitrogen Compounds

- Filter preserved sample for DIN
- Do Not filter preserved sample for TN
- Analyze TN
- Analyze DIN (DIN=TIN)
 - NO3 + NO2
 - NH4
- TON = TN DIN

HTCO Total Nitrogen Bound (TNb)

720° C reactor

TOC & TNb

Total Nitrogen Bound, or TNb is measured on a TOC analyzer

Oxidation

• $2(NH_2)_2CO + 7O_2 + catalyst \rightarrow 4NO_2 + 4H_2O + CO_2$

Reduction

• $2NO_2$ + catalyst $\rightarrow 2NO + O_2$

Detection

Chemiluminescence

Electrochemical

Comparison of TNb to TKN (QC samples)

Advantages and disadvantages of TNb

Alkaline Persulfate Digestions for TN do not require specialized equipment

Manually digest

Determine NO₃-N

Measures all TN

Manual Alkaline Digestion for TN can be done in an autoclave or with test tubes

Alkaline Digestion

• $(NH_2)_2CO + 8 S_2O_8^{-2} + 18 OH^- \rightarrow 2 NO_3^- + CO_2 + 16 SO_4^{-2} + 11 H_2O$

Colorimetry

Any Nitrate or Nitrate + Nitrite method

Comparison of TN to TNb illustrates equivalent results on samples tested

Comparison of TN to TKN + NO₃/NO₂ -N

	TOC (mg/L)	TKN + NOx (mg/L)	TN (mg/L)
Cecil	17.5	2.9	2.9
Greenville 1	36.0	3.1	3.5
Hiwassee 2	59.0	8.8	8.9
Irwin	108	17.7	16.0

Comparison of TN to TKN with % RSD

	TKN (mg/L)	TKN (%RSD)	TN (mg/L)	TN (%RSD)
Bear Creek	0.18	10.65	0.22	5.72
Silver Fork	0.36	19.29	0.41	6.49
Salt River	0.59	25.31	0.76	3.23
Ted Shanks	0.61	25.25	1.05	6.04

Advantages and disadvantages of manual TN persulfate methods

Automated Alkaline UV Persulfate Digestions increase throughput

Automated digest

Determine NO₃-N

Measures TDN

Comparison of Automated TN with TKN

Unknowns regarding the efficiency of Automated UV Alkaline Digestion

Particulates?

Advantages and disadvantages of automated TN persulfate methods

What samples for Total Nitrogen may look like

Organic matter consumes persulfate too

$$(NH_2)_2CO + 8 S_2O_8^{-2} + 18 OH^- \rightarrow 2 NO_3^- +$$

$$CO_2 + 16 SO_4^{-2} + 11 H_2O$$

About 100 ppm C upper limit

A Humic acid molecule

Particulates consume persulfate and are hard to sample

~ 15 - 20% N attached to particulates

Particulates > ~ 30 ppm TSS N/A by CFA

Non quantitative transfer of particulates to HTCO

 Fe^{+2} to $Fe^{+3} = 1 e^{-1}$

Total Phosphorus Digestion Methods

Acid Persulfate (beaker or autoclave)

Kjeldahl (block digestion)

Both convert inorganic and organic phosphorus to orthophosphate

Acid persulfate digestion for total P can be done in a beaker, autoclave, or test tubes

Acid Persulfate Digestion

• R-HPO4 + $S_2O_8^{-2}$ + H2SO4 \rightarrow H3PO4 + nCO₂ + nHSO₄ + n H₂O

Colorimetry

Any Phosphate method

Comparison of Dry Ashing and Acid Persulfate for Total P

Outlier data on persulfate and wet oxidation comparison for TP digestion

Material tested	Dry Ash uMol P	Persulfate uMol P
Montmorillonite	1.44	1.00
Kaolinite	22.0	3.04

Potential problems with acid persulfate digestions for total phosphorus

Too much acid

High chloride

Organic Matter

Excess particulates

Contamination

Advantages and disadvantages of manual acid persulfate methods for TP

"Kjeldahl" Digestion for TP

Kjeldahl Digestion

- R-HPO4 + H2SO4 \rightarrow H3PO4 + nCO₂ + nSO₂ + n H₂O + H₂SO₄
- Contains catalyst

Colorimetry

- Any Phosphate method
 - High Acid concentration
 - Catalyst

Comparison of persulfate and Kjeldahl for TP

Potential problems with Kjeldahl digestions for total phosphorus

High Acid Concentration

Hazardous Digestion

Catalyst

May require dilution of acid

Advantages and disadvantages of manual acid persulfate methods for TP

Using USGS I-4690-91 to overcome problems with normal Kjeldahl phosphorus methods

Uses Dialysis

includes On-line dilution

Includes On-line filtration

Controls acid concentration

Low Detection Limit

Alkaline Persulfate Digestions for Total P

Manually digest

Determine PO₄-3

Measures TP

Manual Alkaline Persulfate Digestion for TP

Alkaline Digestion

• R-HPO₄ + excess S₂O₈-2 + 18 OH \rightarrow H₃PO4 + CO₂ + HSO₄-2 + n H₂O

Colorimetry

Any phosphate method

Comparison of Alkaline Persulfate and Acid Persulfate Total Phosphorus

Compound	Alkaline (mg/L P)	Acid (mg/L P)
Adenosine tri- phosphate (ATP)	0.166	0.176
Glycerophosphate	0.196	0.204
Phenyl Phosphate	0.168	0.179
Phytic Acid	0.177	0.180

Comparison of TKP and Alkaline Persulfate

Advantages and disadvantages of manual Alkaline persulfate method for TP

Automated Alkaline UV Persulfate Digestions

Automated digest

Determine PO₄-3

Measures TDP

Advantages and disadvantages of automated persulfate method for TP

Thank You!!

William Lipps
Ol Analytical
William.lipps@xyleminc.com