Monitoring Pesticides in the Environment: Past, Present and Future – FDA Perspective

National Environmental Monitoring Conference August 6, 2013

> Chris A. Sack, Residue Expert Food and Drug Administration

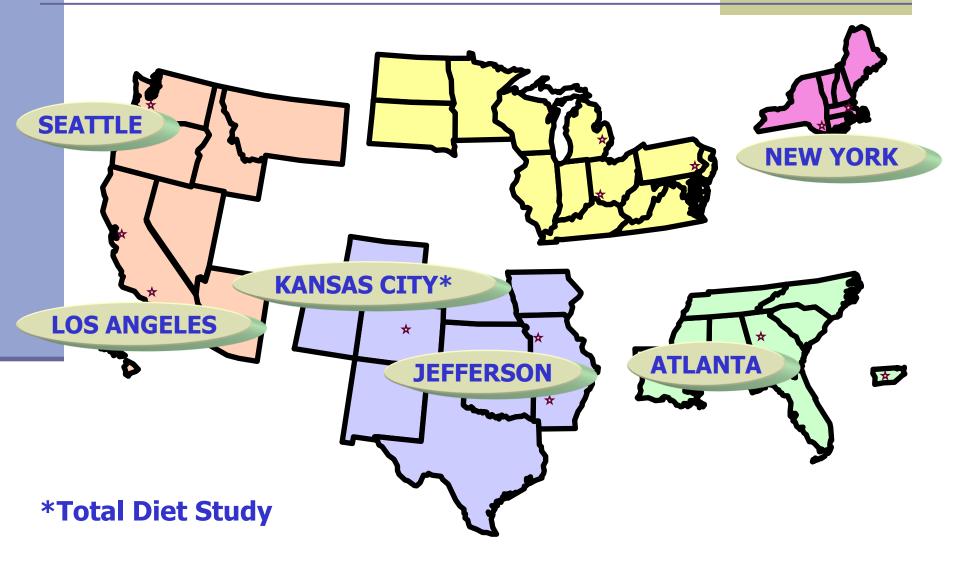
Introduction

Overview

- Regulatory Monitoring
- Program Administration
- Methodology
 - Past
 - Current
 - Future

Overview - Challenges

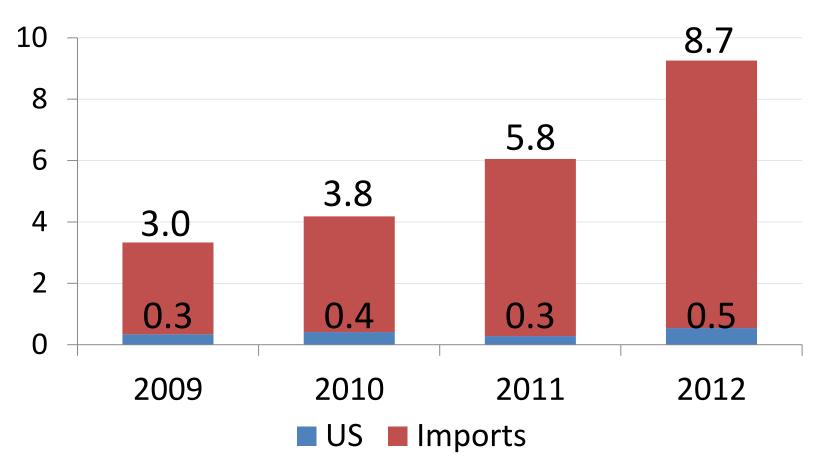
Food and feed matrices Imports: > 11 million per year Domestic: ??? Pesticides and other contaminants 1000s that are known Range: 10 ppb - ??? Analyses


- Up to 50 samples per day per lab
- Timeframe: 1 day for imports

Overview - Programs

Regulatory Monitoring
 Total Diet Study
 Special Assignments

6 PESTICIDE LABORATORIES



Overview – Regulatory Analysis

Sample types:

- Raw agricultural products
- Processed foods (limited)
- Spices/botanicals
- Miscellaneous
- Samples: 5000 7000 per year
 - Target: ~ 400 pesticides per sample
- Detect: ~ 220 different residues per year

Violation Rate (%)

	Violative -	Violation Type (%)		
Year	Residues	No MRL	Exceeds MRL	
2009	603	96.8	3.2	
2010	686	94.5	5.5	
2011	996	96.0	4.0	
2012	1189	96.8	3.2	

Most commonly found violative residues (2010–12)

Carbendazim 313	Profenofos 61	DDT 48
Permethrin 179	DCPA 59	Thiophanate-methyl 47
Tricyclazole 104	Endosulfan 57	Pirimiphos methyl 46
Quintozene 100	Pyrimethanil 54	Prochloraz 45
Ethion 70	Procymidone 53	Cypermethrin 41
Chlorpyrifos 70	Lambda-cyhalothrin 51	Tebuconazole 40
Triazophos 69	Buprofezin 51	Carbofuran 40

Top violative products (2010–12) *

Product	Vio %	Product	Vio %
Capsicums	41	Spinach	15
Basil	35	Sweet potatoes	15
Cilantro	30	Citrus juice	14
Теа	26	Grapes, raisins	12
Rice products	25	Blackberries	12
Papaya	25	Peppers, hot	11
Taro/dasheen	20	Red beets	11
Prickle pear	20	Leeks	10

* > 50 samples analyzed

Program Administration

Analyze more samples

- Increase laboratory efficiency
 - Streamline preparation process
 - Faster methods
 - Modernize data flow LIMS
- Uniformity of protocols and methodology
 - National Accreditation to ISO 17025
 - National GC-QQQ, GC-FS, & LC-MS/MS

Program Administration

Intelligent Sampling

- Coordination with other federal agencies
 - EPA Pesticide usage data
 - USDA Pesticide Data Program (PDP)
- Foreign offices in Europe, Asia, Central and South America
- PREDICT uses FDA historical data to select import samples

Program Administration

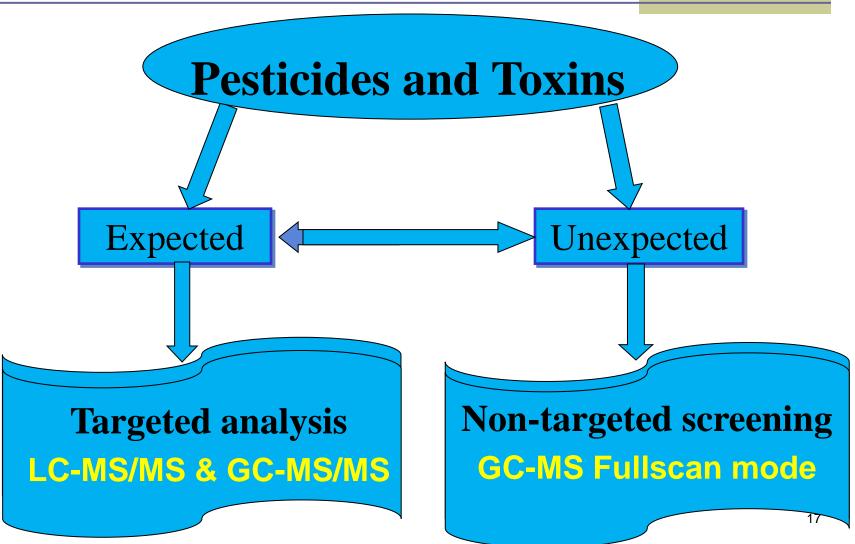
- Coordination with states
 - FERN
 - MOUs
- International coordination/outreach
 - Attendance international workshops
 - International Food Safety Training Lab
 - International Capacity Building and Development

Program Administration

Methodology – Past

Pesticide Analytical Manual

- Technology of 70s 80s
- Extraction: Large
- Cleanup: Complex and tedious
- Determination: GC with selective detection
 - Orgranophosphates: FPD
 - Organohalogens: ECD, XSD, ELCD
 - Organonitrogens: NP
- Identification by retention indices


Methodology-Current

Extraction/Cleanup

- Acetone extraction (two labs)
 - Sample plus acetone
 - Saltout
 - SPE cleanup
- QuEChERS modified (four labs)
 - Sample plus acetonitrile
 - Saltout
 - SPE cleanup
 - LCMS: PSA only or dilute extract
 - GCMS: PSA + C18 and/or GCB, or equivalent

Methodology - Current

Determination

Methodology – Current

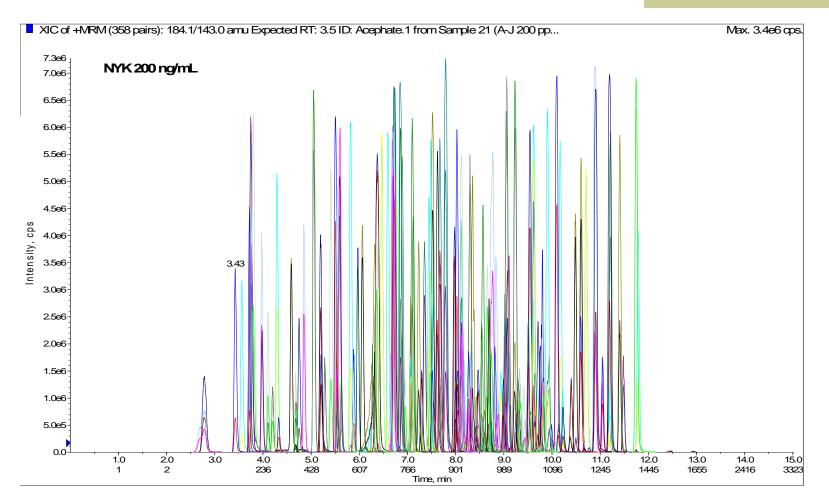
Determination

Targeted Quantitative Analysis LC-MS/MS and GC-MS/MS >350 Selected analytes Historical findings Anticipated findings Calibration Standard Mixtures Designed by FDA Prepared by commercial vendor

Methodology-Current

Determination

- Qualitative Screening Analysis
 GC-MS in fullscan mode (GC-FS)
 - No standards required
 - Spectral Library Technique

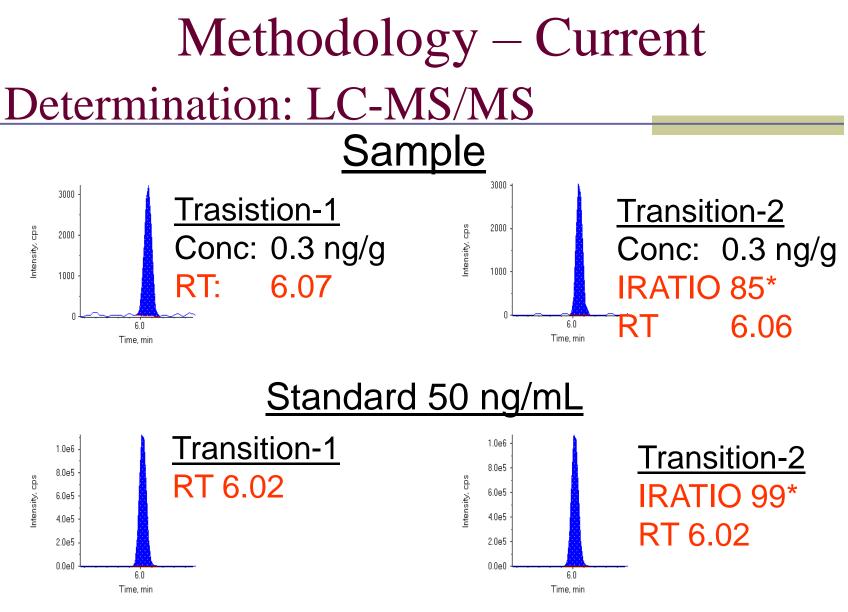

Methodology – Current

Determination: LC-MS/MS

- Scope: >240 pesticides in 15 minutes
- Chromatography: reverse phase
- Columns: C₁₈
 - 100 x 2.1 mm, ~3 μm
 - 50 cm x 4.6 mm, 1.9 μm
- Mass Spectrometer parameters
 - Ionization: Positive electrospray
 - Detection: scheduled MRM (two transitions)
- Detection Limit: < 10 ppb for most compounds</p>
- JAFC 2011, Vol 59, pp 6383ff

Methodology-Current

Determination: LC-MS/MS


Standard containing 190 pesticides

Methodology-Current

Determination: LC-MS/MS

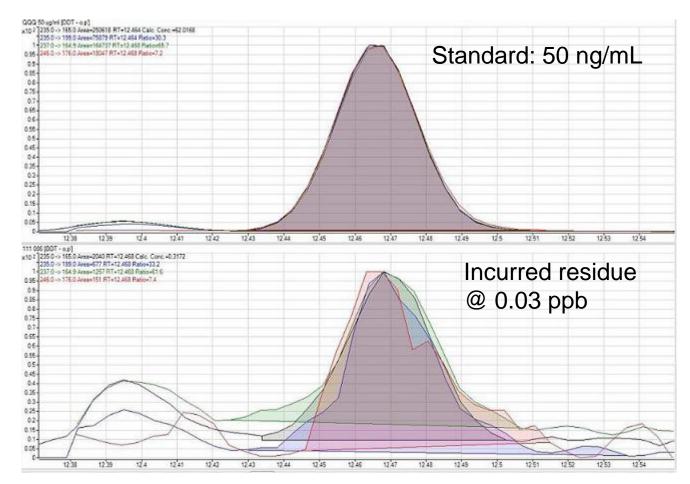
Pesticide	PPB	Pesticide	PPB
Boscalid	128	Novaluron	9
Pyraclostrobin	54	Hexythiazox	5
Cyprodinil	47	Spiromesifen	2
Azoxystrobin	45	Propiconazole	1
Pyrimethanil	41	Acetamiprid	1
Chlorantranilaprole	23	Carbendazim	1
Fludioxinil	22	Methomyl	0.7
Fenhexamid	20	Thiophanate methyl	0.5
Bifenazate	9	Methoxyfenozide	0.3
Myclobutanil	9	Fenpyroximate	0.2

Residues found in composite of 3 strawberry samples

Methoxyfenozide in strawberry @ 0.3 ppb

Methodology – Current Determination: GC-MS/MS

- Scope: > 200 pesticides in 20 minutes
- Agilent 6890GC
 - Retention time locking
 - Backflushing mid column
- Agilent 7000 MS/MS
 - MRM (2-4 transitions/compound)
- Detection Limit: 1 10 ppb for most analytes
- USFDA Lab Information Bulletin 4521

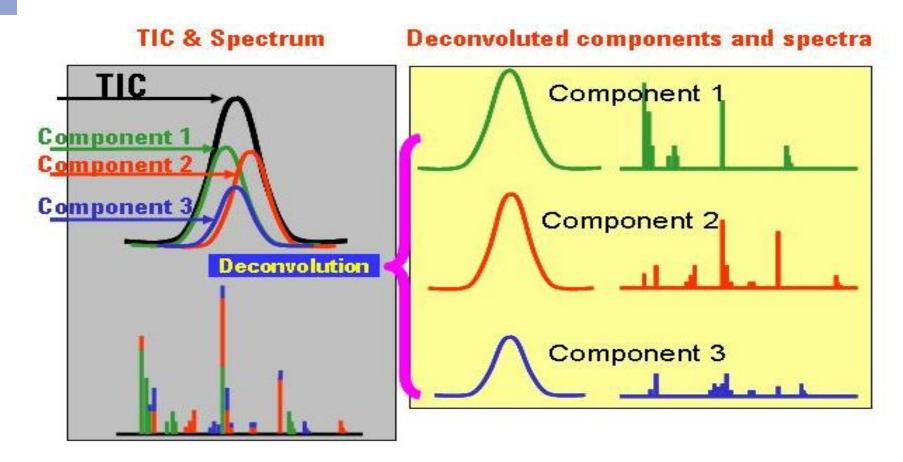

Methodology-Current

Determination: GC-MS/MS

PPB	Pesticide	PPB
237	Bifenthrin	7
128	Quinoxyfen	3
54	Spiromesifen	2
47	Propiconazole	1
41	Fenpropathrin	0.7
37	Biphenyl	0.3
27	Chlorpyrifos	0.1
22	Folpet	0.1
20	p,p'-DDE	0.1
9	p,p'-DDT	0.04
9	o,p'-DDT	0.03
8		
	237 128 54 47 41 37 27 22 20 9 9 9 9 8	 237 Bifenthrin 128 Quinoxyfen 54 Spiromesifen 47 Propiconazole 41 Fenpropathrin 37 Biphenyl 27 Chlorpyrifos 22 Folpet 20 p,p'-DDE 9 p,p'-DDT 9 o,p'-DDT

Residues found in composite of 3 strawberry samples

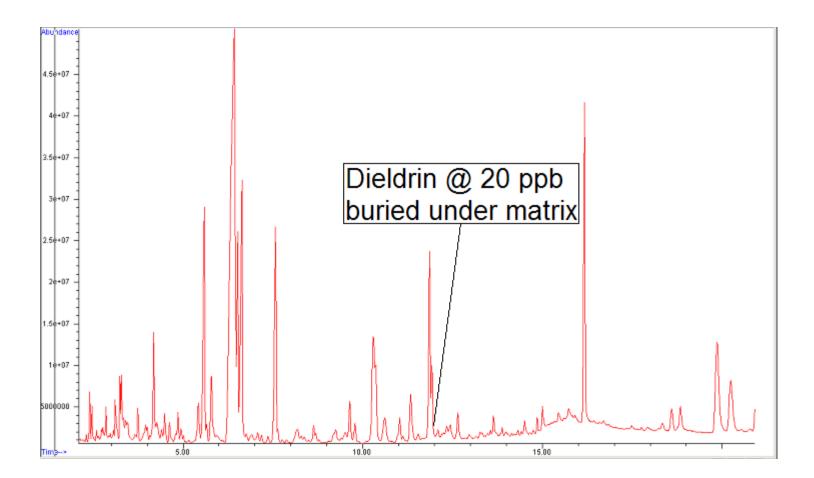
Methodology – Current Determination: GC-MS/MS



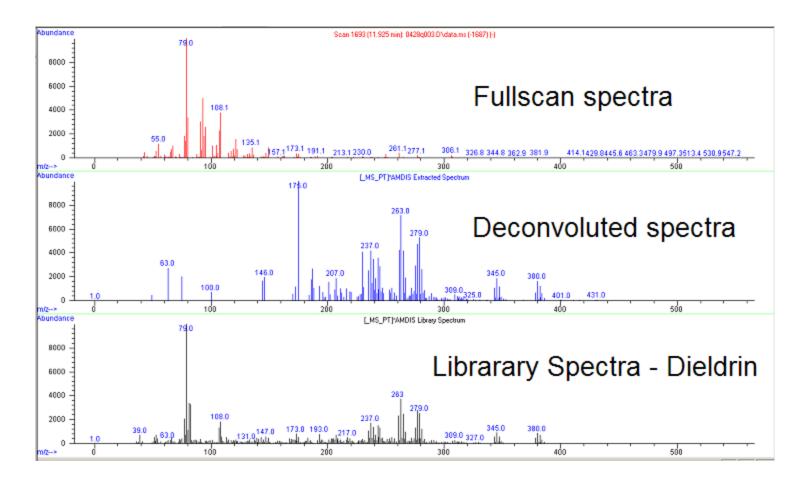
o,p'-DDT in strawberry

Methodology – Current Determination: GC-FS

- Scope: > 900 compounds in 20 minutes
- Screen for library matches no standards
- Agilent GC-MSD pesticide library
- Identification:
 - Spectral matching of AMDIS deconvoluted spectra
 - Retention time


Methodology – Current Determination: GC-FS

AMDIS Deconvolution


Methodology-Current

Determination: GC-FS

Celery fullscan TIC

Methodology – Current Determination: GC-FS

Dieldrin spectra

Methodology-Current

Determination: GC-FS

		AMDIS		NIST	
R.T.	Compound Name	Match	R.T. Diff	Reverse Match	Hit Num.
2.5859	Naphthalene-d8	99	-8.0	91	1
2.842	Carvone	75	-8.3	81	2
3.341	EPTC	94	-7.2	89	2
6.977	Anthracene	80	-5.4	88	5
7.9576	Diisobutyl phthalate	75	1.2	84	11
9.214	Di-n-butylphthalate	65	0.8	90	18
9.658	Parathion	82	2.5	76	2
11.925	Dieldrin	79	1.5	61	2
14.3189	Chrysene-d12	79	-12.1	91	1
14.8515	Bis(2-ethylhexyl)phthalate	96	3.3	85	7
15.7388	Permethrin I	60	6.5	63	2
15.833	Permethrin II	63	7.0	79	
16.518	Cypermethrin II	43	11.7	57	1

Celery deconvolution report

Methodology – Current

Determination: GC-FS

Residues discovered and transferred to the LC-MS/MS and GC-MS/MS targeted analyses:

- Fluopicolide
- Spiromesifen
- Spirodiclofen
- Flonicamide
- Chlorfenapyr
- Etoxazole

- Bifenazate
- Etoxazole
- Fenamidone
- Famoxadone
- Quinoxyfen
- Sudan I*

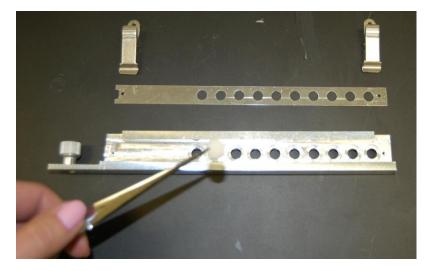
*Food color prohibited in US - not added to target analysis

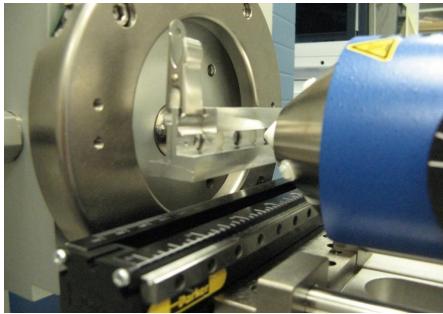
Methodology – Future

Residue Screening

Screening Approach "Semi"- targeted Collect full spectral/RT data Knowns: Libraries Unknowns: Investigate Reduce real-time processing/maintenance Technology - HRMS DART LCMS

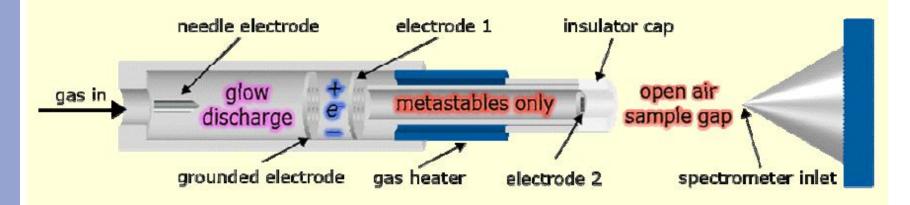
Methodology – Future


Residue Screening: DART


Method

- Swab sample
- Analyze swab by DART-HRMS
- Scope: > 500 pesticides and toxins
 - Analysis time: 7.5 minutes/sample
 - Implementation:
 - Fast screen of imports at port of entry
 - Forward suspect violations for quantitative analysis

Methodology – Future Residue Screening: DART


Custom foam rail autosampler

Methodology – Future Residue Screening: DART

Ionization

$$\begin{split} He(2^{3}S) + nH_{2}O &\rightarrow [(H_{2}O)_{n-1} + H]^{+} + OH^{-} He(1^{1}S) \\ [(H_{2}O)_{n} + H]^{+} + M &\rightarrow [M + H]^{+} + nH_{2}O \end{split}$$

Methodology – Future Residue Screening: DART

Thermo Exactive Orbitrap

Resolution

- ■100,000 @ 1 scan per second
- 10,000 at 10 scans per second
- Mass accuracy: <1 ppm</p>
- •Scan speed: \rightarrow 10 per second
- ■Scan range: 50 4000 m/z
- Detection Limit: < 10 ng/ml (100 ppb) most compounds</p>

Methodology – Future Residue Screening: LCMS

- Thermo Exactive Q-Orbitrap
 - LC: Reverse Phase uHPLC
 - Ionization ESI⁺
 - MS Library: HR molecular ion & fragments
 - Screen > 600 pesticides $@ \le 10$ ppb
 - Expand to other chemical contaminants: mycotoxins, plant toxins, veterinary drugs, dyes, emerging organic pollutants, and unknown contaminants
- LC-QTOF: under investigation

Conclude

Continuous Improvement

- Domestic & international cooperation
- Smarter sampling
- Faster sample preparation
- Screening technologies

Acknowledgements

- David Eide & Michael Smoker (FDA-Kansas City)
- Jon Wong (FDA-CFSAN)
- Greg Mercer & Barb Neuhaus (FDA-Seattle)
- Lorrie Lin & Sara Edison (FDA Forensic Chemistry Center)