Agilent GC/MS Hardware, Software, and Consumables optimized for the Analysis of US EPA Method 8270

Fred Feyerherm GCMS Applications Houston, Tx

Agenda

Hardware – New GC and MSD: 7890B / 5977A Higher sensitivity – More Inert – Still very robust Performance Data Chromatography – Initial Calibration Software – Both Chemstation and Mass Hunter Added capabilities – Universal cross training Ultra Inert Sample Pathway Components Inlets – Columns – Liners – Source

Helium Shortage

Choices – Hydrogen carrier or Helium Conservation

7890B / 5977A GCMS

New Pumps Extractor Source Low Energy Sleep Mode Low Femtogram Detection Limits

Ultimetal Inert Inlets Helium Conservation Mode Easy Switch to H2 Carrier

New Extractor Ion Source for 5977

Increase in ion count ✓ True increase in sensitivity

Better trace level precision ✓ Lower IDL and MDL

Performance Data: Many Different 8270 Methods

- Different compound lists
- Different calibration ranges

For example: High2 – 100 ug/mlLow0.1 – 10 ug/ml

Different reporting limits

Data shown is from EPA Region 6 Lab in Houston

Performance Data – most critical: ical & Perf Eval

Compound		100	80	50	20	10	5	2	Avg	%RSD	
1)	Ι	1,4-Dichlorobenzer)·			ISTI)				
2)	SCP	2-Fluorophenol	1.013	1.001	0.994	0.999	1.000	1.013	0.983	1.000	1.04
3)	SCP	Phenol-d5 (surr2)	1.237	1.221	1.231	1.247	1.225	1.235	1.233	1.233	0.68
4)	MCP	Phenol	1.275	1.288	1.289	1.301	1.304	1.310	1.315	1.297	1.09
5)	SCP	2-Chlorophenol	1.179	1.161	1.168	1.177	1.177	1.172	1.169	1.172	0.53
6)	TCP	bis(2-Chloroet	1.071	1.081	1.077	1.088	1.089	1.084	1.111	1.086	1.16
7)	MCP	2-Chlorophenol	1.200	1.219	1.213	1.216	1.209	1.222	1.223	1.215	0.65
8)	TCP	1,3-Dichlorobe	1.399	1.417	1.412	1.418	1.407	1.439	1.447	1.420	1.22
9)	MCP	1,4-Dichlorobe	1.406	1.427	1.439	1.440	1.453	1.442	1.472	1.440	1.42
10)	TCP	Benzyl Alcohol	0.904	0.905	0.900	0.873	0.852	0.838	0.834	0.872	3.60
11)	SCP	1,2-Dichlorobe	0.832	0.844	0.842	0.861	0.861	0.875	0.893	0.858	2.45
12)	TCP	1,2-Dichlorobe	1.326	1.353	1.366	1.369	1.376	1.385	1.398	1.368	1.70
13)	TCP	2-Methylphenol	0.959	0.972	0.975	1.000	0.988	0.972	1.000	0.981	1.60
14)	TCP	bis(2-Chlorois	1.110	1.153	1.174	1.209	1.203	1.219	1.266	1.191	4.23
15)	TCP	Acetophenone	1.539	1.535	1.541	1.577	1.554	1.569	1.618	1.562	1.89
16)	TCP	3-&/or 4-Methy	1.284	1.293	1.287	1.310	1.287	1.301	1.299	1.294	0.73
17)	MCP	N-Nitroso-di-p	0.748	0.759	0.758	0.769	0.754	0.754	0.781	0.761	1.46
18)	TCP	Hexachloroethane	0.487	0.505	0.505	0.502	0.501	0.512	0.518	0.504	1.91
19)	Ι	Naphthalene-d8 (IS	S			ISTI)				
20)	SCP	Nitrobenzene	0.294	0.297	0.297	0.298	0.305	0.303	0.307	0.300	1.60
21)	TCP	Nitrobenzene	0.299	0.304	0.308	0.307	0.317	0.317	0.319	0.310	2.48
22)	TCP	Isophorone	0.548	0.547	0.543	0.541	0.549	0.547	0.556	0.547	0.93
23)	TCP	2-Nitrophenol	0.177	0.182	0.180	0.174	0.171	0.165	0.154	0.172	5.78
24)	TCP	2,4-Dimethylph	0.265	0.268	0.266	0.255	0.260	0.264	0.264	0.263	1.58
25)	TCP	bis(2-Chloroet	0.354	0.357	0.358	0.359	0.361	0.365	0.368	0.360	1.34
26)	TCP	Benzoic Acid	0.165	0.193	0.178	0.144	0.097	0.060	0.032	0.124	50.01#
27)	TCP	2,4-Dichloroph	0.292	0.293	0.290	0.284	0.282	0.276	0.268	0.283	3.20
28)	MCP	1,2,4-Trichlor	0.333	0.336	0.337	0.333	0.341	0.340	0.342	0.337	1.13
29)	TCP	Naphthalene	0.900	0.919	0.928	0.938	0.954	0.972	0.987	0.943	3.23
30)	TCP	4-Chloroaniline	0.374	0.376	0.374	0.369	0.359	0.347	0.304	0.357	7.23
31)	TCP	Hexachlorbutad	0.210	0.211	0.210	0.207	0.210	0.212	0.213	0.211	0.89
32)	TCP	Caprolactam	0.068	0.068	0.079	0.076	0.073	0.069	0.065	0.071	7.15
33)	MCP	4-Chloro-3-met	0.260	0.258	0.254	0.248	0.241	0.235	0.235	0.247	4.26
34)	TCP	2-Methylnaphth	0.556	0.562	0.564	0.560	0.565	0.565	0.585	0.565	1.68

Software – Both Chemstation and Mass Hunter

Chemstation - Enviroquant

Classical tools for analysis and reporting

Mass Hunter

New platform with new capabilities

Batch mode calibration tools

All Agilent MS platforms (GCMS, GC-QQQ, LCMS, ICP-MS)

GC/MSD Software

GC/MSD Acquisition Methods

MSD Productivity ChemStation

GC/MS Acquisition Methods are Transparent from MSD ChemStation to MassHunter GC/MS (Except PAL Autosampler)

MassHunter GC/MS Acquisition

Migrate Quantitative Methods to MassHunter Format

MassHunter Quant

Agilent Inert Flow Path Solution

Agilent Confidential August 10, 2013

Inert Flow Path Split/Splitless Inlet

UltiMetal Plus treatment creates inert surface 7890 inlet weldment & shell

- Limit adsorption / degradation active analytes
 in contact with hot metal
- Target trace GC/MS active compound analysis
- Combine with Agilent's UI Liners, UI gold seals, UI GC columns

UltiMetal Plus surface treatment

Helium Shortage Issue

What can we do?

- There are only two realistic choices:
 - Switch to a different carrier gas such as Hydrogen
 - Implement Helium conservation measures

Hydrogen Carrier – brief summary

Agilent has advised H2 carrier for 8270 for over 15 years Mainly for faster runs and better GC resolution Easy to convert with a little guidance Use a 20m x 0.18 column with 0.5 ml/min flow Set inlet temp to 230C (avoids HCI formation with MeCI2)

EPA Region 8 in Golden, Co has been using H2 for over a year Both for VOA's and 8270

But methods have to be re-validated – new RT's

New Approach: Helium Conservation

While the GC is just sitting there, it is blowing gas out the vents 24/7

- Minimum flow is about 25 ml/min per S/SL inlet
- 1440 min/day x 25ml = 36,000 ml/day = 36 liters/day per inlet

If the GC is idle, you can switch to a cheaper standby gas such as nitrogen

- Helium cost is 17 cents per cubic foot, N2 is 0.03 cents per cubic foot (prices vary by area)
- Cheapest source of N2 is liquid LN2 dewars

Nitrogen Switching

- Manual valve (any GC)
- Electronic valve (5890, 6890, 7890)
- Fully Automatic EPC (7890B option) (7890A in July)

Helium Conservation Tools

Helium Conservation

- Smarter helium use with new hardware/software tools
- No need to revalidate existing GCMS methods
 - RT's are the same
 - Performance is the same

Reducing Helium Use With Conservation New 7890B Helium Conservation Module

- Automatically switches carrier gas supply to N₂ Standby during idle time
- Integrates into the new 7890B Sleep and Wake function
- Combined with Helium Gas Saver to GREATLY reduce helium consumption

Helium Conservation Module

Seamlessly integrated onto 7890 GC hardware and software

- Based on EPC module
- Fully controlled by Agilent data systems
- Precise pressure control between tank and GC
- Switch between gases within 2-5 min depending on flow setting

How It Works: Configuring Sleep/Wake Operation Simple, Straight Forward Setup

Dustom			•			
Schedule						
Day	Set Wake Method	Wake Time	Set Sleep Method	C Sleep Time		
Sunday						
Monday						
Tuesday			12		1	
Wednesday						
Thursday	(m)					
Friday						
Saturday			80			
Wake Method:	Edit Wake Method		Sleep Method: E	dit Sleep Method		

Future Developments

- Self-cleaning ion source
- Improved PAH peak shape at 1.0 picogram levels
- Micro-extraction with LVI

Acknowledgements

David Spencer, Diane Gregg

Vince Marti

EPA Region 6 Houston, Tx EPA Region 8 Golden, Co

Call or email me for specific guidelines:

Fred Feyerherm

- fred_feyerherm@agilent.com
- 713-392-8493 cell

