eurofins

Lancaster Laboratories Environmental

Evaluation of Organic Contaminants Found in Materials used for Well Construction

Chuck Neslund, Technical Director charlesneslund@eurofinsus.com

NEMC Environmental Measurement Symposium, August 4-8, 2014, Washington, DC

Providing comprehensive scientific resources to environmental clients worldwide.

EPA Report from 2012

"*The Potential Impacts of Hydraulic Fracturing on Drinking Water Resources: Progress Report* (December 2012), EPA 601/R-12/011 (Appendix A)"

EPA associated a correlation between certain organics and hydraulic fracturing fluids.

glycolsphenolsbenzoic acid2-butoxyethanol

🛟 eurofins

It follows then that the detection of these compounds in groundwater was a result of the use of hydraulic fracturing fluids.

Or does it? What about the materials used for well construction? Are any of the compounds associated with hydraulic fracturing fluids present due to the use of certain construction materials?

🛟 eurofins

Bert Smith with EnviroClean Products and Services (a Chesapeake Energy contractor) organized a collaborative study to evaluate well construction materials, what organic compounds might be present and could they leach out.

Collaborators

Dr. Donald Siegel – Syracuse University Dr. Charlie Carter – TestAmerica Laboratories, Inc. Chuck Neslund – Eurofins Lancaster Laboratories Environmental, LLC.

eurofins

Steps of the Study to be Evaluated

- 1. What well construction materials should be considered?
- 2. Are any of the organics identified by the EPA reasonably expected to be present in well construction materials?
- 3. Can we confirm/determine the presence of these compounds in the well construction materials?
- 4. For those compounds determined in the well construction materials, do they leach out from the "deployed" material?

Many different kinds of materials used in well construction but based on amount used, frequency of use and potential for impact on groundwater we selected;

- Portland Cement Type I/II
- Bentonite

Resulting from an internet search, literature search and reference to the following document;

Ervanne and Hakanen, *Analysis of Cement Superplasticizers and Grinding Aids, A Literature Survey,* Working Report 2007-15; April, 2007 (page 29)

We learned that glycols, glycol ethers, phenols, alkanolamines and alcohols are all used as grinding aids and are common cement additives.

🛟 eurofins

The group agreed to use analytical techniques that were well accepted for the analysis of constituents. Since there was not a good consistent analytical technique for the alkanolamines, that class of compounds was not considered for the study.

eurofins

Compound List

Compound	Method
Ethylene Glycol	SW-846 8321 (LC/MS/MS)
Propylene Glycol	SW-846 8321 (LC/MS/MS)
Diethylene Glycol	SW-846 8321 (LC/MS/MS)
Triethylene Glycol	SW-846 8321 (LC/MS/MS)
Tetraethylene Glycol	SW-846 8321 (LC/MS/MS)
2-Butoxyethanol	SW-846 8321/SW-846 8270C
Ethanol	SW-846 8260B
Isopropanol	SW-846 8260B
n-Propanol	SW-846 8260B
tert-Butyl alcohol	SW-846 8260B
Acetone	SW-846 8260B
2-Butanone (MEK)	SW-846 8260B
Phenol	SW-846 8270C
2-Methylphenol	SW-846 8270C
3/4-Methylphenol	SW-846 8270C
2,4-Dimethylphenol	SW-846 8270C
Benzoic Acid	SW-846 8270C

To assess the presence of these compounds in Portland Cement and Bentonite products, materials were purchased from several different home-improvement retail stores in Oklahoma and New Mexico.

- 5 Portland Cement Products Type I and Type I/II
- 10 Bentonite Products

Chips, Drilling viscosifier, % solids grout and coated/uncoated pellets

🔅 eurofins

Materials were given generic designations and were subsampled and sent to each laboratory.

A duplicate of one of each type of material was randomly chosen and also submitted to each laboratory.

Laboratories coordinated on mixing ratios for each of the products.

i.e. all cement mixed in 1:1 ratio with water, bentonite ratios varied based on product

Compound	Testing Lab	Cement A ug/kg	Cement B ug/kg	Cement C ug/kg	Cement D ug/kg	Cement E ug/kg	Cement F (Duplicate of A) ug/kg	Container and Trip Blank ug/kg	Method Blanks ug/kg
	ТА	7500J	<1100	<5400	<1100	2800J	8900J	<27	<27
Ethylene Glycol	LAN	5500	<500	1000	<500	1600	8000	<500	<500
December 2 Clause	ТА	<900	<180	<900	<180	<450	<900	<4.5	<4.5
Propylene Glycol	LAN	<100	<100	<100	130	110	<100	<100	<100
	ТА	37000	<150	33000	<150	14000	37000	3.7J	<3.7
Diethylene Glycol	LAN	34000	50	31000	230	10000	28000	<25	<25
Tristalana Church	ТА	79000	<120	5200	<120	20000	76000	<3.1	<3.1
Triethylene Glycol	LAN	71000	<25	4200	<25	20000	66000	<25	<25
	ТА	11000	<80	<400	<80	2500	11000	<2.0	<2.0
Tetraethylene Glycol	LAN	9400	<25	360	<25	2300	9800	<25	<25
2-butoxyethanol	ТА	33J	<12	<12	<12	51J	<12	<12	<12
	LAN	12	<5	<5	<5	36	13	<5	<5

🛟 eurofins

Results – SW-846 8260B

Compound	Testing Lab	Cement A ug/kg	Cement B ug/kg	Cement C ug/kg	Cement D ug/kg	Cement E ug/kg	Cement F (Duplicate of A) ug/kg	Container and Trip Blank ug/kg	Method Blanks ug/kg
Ethanol	ТА	<94	<94	<94	<94	<94	<94	<94	<94
Ethanoi	LAN	<2500	<2500	<2500	<2500	<5000	<2500	<250	<250
T1	ТА	17JB	18JB	15JB	<13	<13	<13	35JB	38.4J
Isopropanol	LAN	<1000	<1000	<1000	<1000	<1000	<1000	<100	<100
	ТА	DJ	DJ	DJ	DJ	DJ	DJ	ND	DJ
n-propanol	LAN	ND	ND	ND	ND	ND	ND	ND	
	ТА	<11	<11	<11	<11	<11	<11	<11	<50
tert-butyl Alcohol	LAN	<800	<800	<800	<800	<1600	<800	<80	<80
	ТА	19	73	70	77	62	58	57	<1.9
Acetone	LAN	<200	<200	<200	<200	<400	<200	<20	<20
2-Butanone	ТА	5.7J	7.6	6.1	3.2J	4.5J	2.7J	7.4	<2.0
	LAN	<100	<100	<100	<100	<200	<100	<10	<10

🔅 eurofins

Results – SW-846 8270C

Compound	Testing Lab	Cement A ug/kg	Cement B ug/kg	Cement C ug/kg	Cement D ug/kg	Cement E ug/kg	Cement F (Duplicate of A) ug/kg	Container and Trip Blank ug/kg	Method Blanks ug/kg
	TA	<0.35	56	140	210	<0.44	<0.43	<0.42	<0.34
Phenol	LAN	<1	29	71	120	<1	<1	<1	<1
	TA	<0.42	<0.51	<0.52	<0.53	<0.53	<0.51	<0.50	<0.41
2-Methylphenol	LAN	<1	<1	<1	<1	<1	<1	<1	<1
	TA	<0.64	<0.79	<0.79	<0.81	<0.80	<0.77	<0.76	<0.63
3&4-Methylphenol	LAN	<1	<1	<1	<1	<1	<1	<1	<1
	TA	<0.47	<0.57	<0.58	<0.59	<0.58	<0.56	<0.55	<0.45
2,4-Dimehtylphenol	LAN	<1	<1	<1	<1	<1	<1	<1	<1
Benzoic Acid	TA	61	18J	<2.1	<2.1	<2.1	74	<2.0	<1.6
	LAN	17	<16	19	22	19	18	<15	<15

🛟 eurofins

Results between the two laboratories were reasonably similar.

The alcohols and other volatiles were not detected so will not be carried into leaching evaluation.

Because they were consistently detected by both labs the glycols, 2-butoxyethanol, benzoic acid and phenol would be carried through to next phase.

Two aspects of leachability to be investigated

Phase 1 – Short Term Exposure of Cured Cement.

Cured cement exposed to laboratory water for 24 hours. Water removed, clean water added and exposed for another 24 hours. Repeated for 5 days

Phase 2 – Long Term Exposure of Cured Cement

Four similar quantities of cured cement exposed to laboratory water for 1, 5, 10 and 20 days.

Leachability

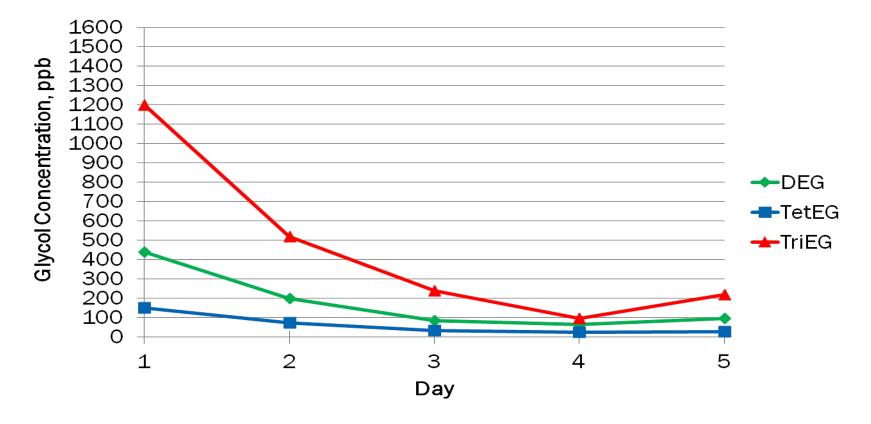
🛟 eurofins

Leachability

Phase 1

Phase 2

🔅 eurofins


Leachability – Phase 1 Results

Commond	Techer Lak	Day 1	Duplicate (Day 1)	Day 2	Day 3	Day 4	Day 5	Method Blank(s)
Compound	Testing Lab			Day 2				
Education Charact	TA	<540	<540	<270	<540	<540	<270	<27
Ethylene Glycol	LAN	<500	<500	<500	<500	<500	<500	<500
Dranulana Chuaal	TA	<90	<90	<45	<90	<90	<45	<4.5
Propylene Glycol	LAN	<100	<100	<100	<100	<100	<100	<100
Diethylene Glycol	TA	540	230	170	110	88	78	<3.7
Dietifylelie Ofycol	LAN	440	550	200	85	66	97	<25
Triathulana Clusal	TA	1500	1400	580	400	300	250	<3.1
Triethylene Glycol	LAN	1200	1000	520	240	95	220	<25
Tetraethylene Glycol	TA	160J	190	95	78	62	52	<2.0
	LAN	150	130	74	34	<25	28	<25
2 hutowyothonol	TA	<12	<12	<12	<12	<12	<12	<1.5
2-butoxyethanol	LAN	<5	<5	<5	<5	<5	<5	<5
Benzoic Acid	TA	14J	15J	14J	14J	18J	15J	<1.5
Benzoic Acia	LAN	<16	<16	<16	<15	<15	<15	<15
Phenol	TA	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.34	< 0.32
FIICHOI	LAN	<1	<1	<1	<1	<1	<1	<1

🔅 eurofins

Bert Smith, GWPC Presentation July 2013

Leachability – Phase 2 Results

Compound	Testing Lab	Day 1	Duplicate (Day 1)	Day 5	Dec. 10	Day 20	Method Blanks
				Day 5	Day 10	Day 20	(3)
Ethelene Classel	TA	<540	<540	<540	<1400	<1400	All <27
Ethylene Glycol	LAN	<500	<500	<500	<500	560	All <500
Dramadana Chuad	TA	<90	<90	<90	<230	<230	All <4.5
Propylene Glycol	LAN	<100	<100	<100	<100	<100	All <100
Diethylene	TA	230	540	1200	1800	2200	All <3.7
Glycol	LAN	550	440	1500	1900	1900	All <25
Triethylene	ТА	1400	1500	4200	6100	7100	All <3.1
Glycol	LAN	1000	1200	2900	4400	5600	All <25
Tetraethylene	TA	190	160J	630	730J	900J	All <2.0
Glycol	LAN	130	150	360	680	840	All <25
	ТА	<12	<12	<12	<12	<12	All <12
2-butoxyethanol	LAN	<5	<5	<5	<5	<5	All <5
Denesis Asil	TA	15J	14J	15J	5.8J	7.5J	All <1.5
Benzoic Acid	LAN	<16	<16	<16	<15	<15	All <15
Phenol	TA	< 0.33	< 0.33	< 0.33	< 0.34	< 0.36	All <0.32
Phenoi	LAN	<1	<1	<1	<1	<1	All <1

🛟 eurofins

Leachability – Phase 2 Results

Bert Smith, GWPC Presentation July 2013

eurofins

- Several of the compounds potentially associated with hydraulic fracturing fluids are found in well construction materials
- Glycols were detected at substantial concentrations
- The use of 8321 allows for the determination of glycol concentrations not previously possible with 8015
- The compounds detected in cement do leach in water from the cured product under short term and long term exposure scenarios

🛟 eurofins

Bert Smith, PG – Manager of Oil and Gas Services at EnviroClean Products and Services, Yukon, OK <u>bsmith@envirocleanps.com</u>

Donald Siegel, PhD – Jessie Page Heroy Professor and Department Chair at the Department of Earth Sciences, Syracuse University, Syracuse, NY <u>disiegel@syr.edu</u>

Charles Carter, PhD – Vice President of Technical Services and Quality Assurance at TestAmerica Laboratories, Inc., Las Vegas, NV charlie.carter@testamericainc.com

eurofins