Development of the GC-MS Organic Aerosol Monitor (OAM) For In-field Detection of Fine Particulate Organic Compounds

Paul M Cropper; Jaron C Hansen; Delbert J Eatough Brigham Young University, Dept. of Chemistry and Biochemistry **Robert E Cary** Sunset Laboratories, Inc.

June 22, 2015

National Ambient Air Quality Standards (NAAQS)

Pollutant [final rule cite]		Primary/ Secondary	Averaging Time	Level	Form
<u>Carbon Monoxide</u> [<u>76 FR 54294, Aug 31, 2011]</u>		primary	8-hour	9 ppm	Not to be exceeded more than once per year
			1-hour	35 ppm	
Lead [73 FR 66964, Nov 12, 2008]		primary and secondary	Rolling 3 month average	0.15 µg/m ^{3 <u>(1)</u>}	Not to be exceeded
<u>Nitrogen Dioxide</u> [<u>75 FR 6474, Feb 9, 2010]</u> [<u>61 FR 52852, Oct 8, 1996]</u>		primary	1-hour	100 ppb	98th percentile, averaged over 3 years
		primary and secondary	Annual	53 ppb <mark>(2)</mark>	Annual Mean
<u>Ozone</u> [<u>73 FR 16436, Mar 27, 2008]</u>		primary and secondary	8-hour	0.075 ppm <mark>(3)</mark>	Annual fourth-highest daily maximum 8-hr concentration, averaged over 3
Particle Pollution Dec 14, 2012	PM _{2.5}	primary	Annual	12 µg/m ³	annual mean, averaged over 2 ,
		secondary	Annual	15 µg/m ³	annual mean, averaged over 3 years
		primary and secondary	24-hour	35 µg/m ³	98th percentile, averaged over 3 years
	PM ₁₀	primary and secondary	24-hour	150 µg/m ³	Not to be exceeded more than once per year on average events are
<u>Sulfur Dioxide</u> [<u>75 FR 35520, Jun 22, 2010]</u> [38 FR 25678, Sept 14, 1973]		primary	1-hour	75 ppb <mark>(4)</mark>	youn percentile of 1-hour daily maximum concentrations, averaged over 3 years
		secondary	3-hour	0.5 ppm	Not to be exceeded more than once per year

http://www.epa.gov/air/criteria.html

Organic Aerosol

Particulate Matter (PM) Composition:

- Inorganic Material
- Soils & Dust
- Metals
- Black Carbon
- Organic Compounds

10-90%

(1) Lee, S. H.; Allen, H. C. Anal Chem 2012, 84, 1196-1201.

PM Organic Markers

Levoglucosan

Polycyclic aromatic hydrocarbons (PAHs)

Cholesterol

Organic Aerosol Composition For Source Apportionment

Field Techniques

Current Instrumentation:

- Aerodyne Aerosol Chemical Speciation Monitor
- Aerodyne Aerosol Mass Spectrometer
- TSI Aerosol ToF Mass Spectrometer (discontinued)

(1) Williams, B. J.; Goldstein, A. H.; Kreisberg, N. M.; Hering, S. V. P Natl Acad Sci USA 2010, 107, 6676-6681.

GC-MS Organic Aerosol Monitor (OAM)

Collection/Thermal Desorption Chamber

Chamber Specifications:

- Deactivated Quartz Filter
- Inertium Treated Stainless Steel Chamber
- Resistively Heated
- Desorb at 150- 280 °C
- Condition/Clean at 280-350 °C

Chamber

PCC

↓ MS

- 1- Levoglucosan
- 2- Stearic Acid
- 3- Dehydroabietic acid

Compact Gas Chromatograph

Chamber

PCC GC

↓ MS

Toroidal Ion Trap Mass Spectrometer

Chamber

PCC

OAM System Testing

Levoglucosan Desorption Calibration:

Calibration Curve:

- 1. Linear from 60-400+ ng
- 2. Nonlinearity at low concentrations
 - a. Ion Trap Response
 - b. Discriminator level
 - c. Degradation

OAM System Testing

Atmospheric Chamber

Dehydroabietic acid:

• Standard Addition • Calibration Curve

45

Levoglucosan: slopes same at 85% Cl

OAM Field Results

Total Ion Chromatogram (TIC) for an ambient sample collected 2/5/2015 from 10:00- 11:00 a.m.

OAM Field Results

Series of chromatograms (m/z 60) demonstrating levoglucosan detection.

Semi-continuous concentrations of pyrene, levoglucosan, and an unidentified compound.

OAM Field Results

Semi-continuous concentrations of levoglucosan, black carbon, and NOx.

Conclusions

- Autonomous operation
- In-field reliability
- Semi-continuous concentrations of organic markers
- High sensitivity & selectivity

OAM Future Development

- Integration of sorbent tube for autonomous VOC sampling
- Further filter testing for higher temperatures
- Use for source apportionment (PMF analysis)

Acknowledgements

Brigham Young University Department of Chemistry and Biochemistry

Jaron Hansen, BYU Ed Lee, Torion Tech. Bob Cary, Sunset Lab. Delbert Eatough, BYU Milton Lee, BYU & Torion Arden Pope, BYU

Funding and Support

H National Institutes of Health

SOUTHERN CALIFORNIA

NSF

TORION

