High Performance Ion Mobility Spectrometry – An Ideal Field Analytical Instrument

Ching Wu, Anthony Midey, and Adam Graichen
Excellims Corporation, 20 Main Street, Acton, MA 01720
Ion Mobility Spectrometry

Interaction based separation rely on analyte and drift media properties

Ion mobility based separation relates to gas phase size, shape, and stereostructure

High speed m/z correlated separation at low instrument cost with portability

\[v = KE \Rightarrow \frac{L}{t_d} = K \frac{V}{L} \Rightarrow K = \frac{L^2}{Vt_d} \]

\[K = \frac{3}{16N} \left(\frac{2\pi}{\mu kT} \right)^{\frac{1}{2}} \frac{q}{\Omega} \]

\[\mu = \frac{mM}{(m + M)} \]

\[t_d = \frac{16N}{3} \left(\frac{\mu kT}{2\pi} \right)^{\frac{1}{2}} \frac{L^2}{Vq} \left(\frac{\Omega}{q} \right) \Rightarrow t_d \propto \frac{\Omega \mu^{\frac{1}{2}}}{q} \]
In Instrumentation Field
IMS Adoption is Accelerating

“Ion Mobility…A prevailing theme at ASMS this year”
JP Morgan, “ASMS 2013 Final Thoughts”

Number of Topics about Ion Mobility Spectrometry by Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Papers Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>0</td>
</tr>
<tr>
<td>1962</td>
<td>0</td>
</tr>
<tr>
<td>1972</td>
<td>0</td>
</tr>
<tr>
<td>1982</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>350</td>
</tr>
</tbody>
</table>

Waters Synapt G2
Excellims MA3100 with Thermo Orbitrap
Agilent 6560
AB Sciex Seletion
Hyphenated IMS-MS

(A)

(B)

(C)

Selected Mobility Analyzer (example of trapped solar mass)

Operating Modes
1. Open
2. Closed
3. Open & close to generate 2D IMS-MS Dots
4. Closed
5. Pass only a selected mobility window
6. Narrow grid
 Simultaneous pass multiple selected mobility windows

Excellims Corporation
July 13, 2015
NEMC 2015, Chicago
Hyphenated HPLC-IMS

Resolve coeluting isomers
Shorten LC methods
Separate complex mixtures
Eliminate specialty columns

LC Separation:
- Column: Thermo Scientific Acquity C18, 2.1 x 250mm, 5.0μm
- Mobile Phase: H₂O (A), ACN (B)
- Flow Rate: 0.200 mL/min
- Injection Volume: 5.0 μL
- Gradient: Hold 0% B for 8 min, hold 15% B for 7 min, hold 40% B for 10 min
- UV Detection: 190 nm (blue), 210 nm (red)

Intensity Scaling: 5.8x
Bring Spectrometers toward the Analytical Targets

For targeted field analysis, IMS has superior advantages because of its robustness and no vacuum required.

- Resolution 450,000
- Resolution 1000
- Resolution 250
- Resolution 70-120
- Resolution 35
- Resolution 15

m/z measurement
Vacuum measurement
Reduced performance in field-use

Size measurement
Ambient pressure
Easiest field-use
Improved performance
Standalone High Performance Ion Mobility Spectrometry

Resolving Power $R = \frac{t_d}{t_{w1/2}}$

$R = 98 \quad N = 53000$

Resolving Power (R)
(U)HPLC 65 145
Analysis Time 3 min 20 min 10 sec

CoQ10
HPIMS For Field Analysis

- **Car-mount HPLC-UV**
- **ESI-HPIMS**
- **GC-MS**
- **Thermal Desorption IMS**

One Step Liquid Sample Analysis - Directspray Ionization

Electrospray Source

- Sample: 1-8 μL/min
- Sheath Liquid (ACN or MeOH): 0.5-4 μL/min
- 1.5 - 5 kV

Excellims Corporation

July 13, 2015

NEMC 2015, Chicago
HPIMS for Explosive Detection

Explosives Detection

HPIMS with Thermal Desorber and Neg Mode Corona Discharge Ionization

![Graph showing detection of TNT and C4 using HPIMS](image)

- 1 ng TNT
- 5 ng C4

1 ng TNT and 5 ng C4 using CDI-TD and HPIMS

**ESI-HPIMS: C. Wu and co-workers, *IJMS, 2010, 298, 64.*
ESI-HPIIMS Enables Detection of HME and Inorganic Explosives

(a) ESI-IMS-MS at Faraday detector 0.1 mg/mL AN with 1:1 D-fructose

(F+NH₄)⁺

(b) ESI-IMS-MS at Faraday detector 0.1 mg/mL AN with 1:1 D-fructose

[NH₄NO₃]⁻

(NO₂)⁻

(F+NO₃)⁺

Inorganic Anions with Directspray GA2100 HPIMS

Intensity (arb. units)

<table>
<thead>
<tr>
<th>Anion</th>
<th>6</th>
<th>6.5</th>
<th>7</th>
<th>7.5</th>
<th>8</th>
<th>8.5</th>
<th>9</th>
<th>9.5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃⁻</td>
<td>5</td>
<td></td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td>9</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>ClO₃⁻</td>
<td></td>
<td>8</td>
<td>9</td>
<td></td>
<td>10</td>
<td></td>
<td>11</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>ClO₄⁻</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td>9</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>MnO₄⁻</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Nitrate Permanganate Chlorate Perchlorate

TATP

[NO₃]⁻
Reaction Monitoring – Radiopharmacy

- Constrained versus straight geometry identified in the gas phase
- 2 amu difference in OH-compound compared to a F-compound shows baseline separation due to hydrogen bonding interaction
Process Monitoring – Surfactants

Journal of Chromatography A
Volume 852, Issue 2, 13 August 1999, Pages 475–485
Cleaning Validation

- Speed is critical
- At line analysis is desirable

Swab Recovery

<table>
<thead>
<tr>
<th>Parameters</th>
<th>HPLC</th>
<th>ESI-HPIMS</th>
<th>Commercial IMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery (%)</td>
<td>84.5</td>
<td>83.4</td>
<td>Not detectable</td>
</tr>
<tr>
<td>Precision RSD (%)</td>
<td>2.1</td>
<td>8.0</td>
<td>Not detectable</td>
</tr>
<tr>
<td>Total analysis time per run</td>
<td>~12 min</td>
<td>< 1 min</td>
<td>NA</td>
</tr>
</tbody>
</table>

- Spike level: 1.66 μg/cm²
- Results from HPLC and ESI-HPIMS analysis are comparable
Food Safety Inspection
Banned Sweetener

Signal Intensity (Arb. Units)

Sodium Cyclamate Directspray ESI-HPIIMS

- 500 ppb
- 50 ppb
- 9 ppb

Drift Time (s)

- 500 ppb Cyclamate
- 50 ppb Cyclamate
- 9 ppb Cyclamate
Directspray Milk Sample Melamine Detection

ESI-HPIMS of Melamine

- Melamine standard in ESI solvent
- 1 ppm

ESI-IMS of Melamine in 1% Milk

- Melamine standard (ESI solvent)
- Melamine in milk matrix

Simplified sample prep:
- Denatured 1 mL of 1% milk with 5 mL of 1M acetic acid (aq)
- Filtered with 0.45 m nylon syringe filter
- Add 1 mL methanol and analyzed both spiked and unspiked

36 ppm of melamine detected with good signal-to-noise in milk
- Lower concentrations should be detectable
Food Safety Inspection
Food Dye

Allura Red AC

- Negative ion mode with air drift gas
- Detect anion of salt
- 170°C IMS temperature
- Can detect 50 ppb
Food Safety Inspection

Coca-Cola – spiked with DCHP

Use a simplified sample preparation and detect phthalate spiked into an actual beverage sample

Black: Blank – MeOH/water(90:10)
Red: Coke/MeOH (90:10)
Green: Coke/MeOH/DCHP(5 ppm)

• Diluted Coca-cola 9:1 with methanol both spiked and unspiked
• Can detect 5 ppm in the cola
• Factor of 30 lower than the current accepted method can detect
Rhodamine B – Illegal Food Dye

- Lowest conc. detected with GA2100 (ESI solvent) = 50 ppb
- Sciex published method <100 ppb with LC-MS
Malachite Green – Aquaculture By-product

- Lowest conc. detected (ESI solvent) with GA2100 ~ 100 ppb
- Two-order of magnitude linear response range
Drug Safety Inspection
Herb Medicine Additives – Prescription Drugs

Rosiglitazone 357.428
Pioglitazone 356.44
Ciprofloxacin – Antibiotic Residue

- Lowest concentration detected (in ESI solvent) = 75 ppb
- Two order of magnitude linear response

Ciprofloxacin Calibration curve

$R^2 = 0.9927$
ESI-HPIMS for Online Water Analysis

Thiodiglycol (TDG) Response Curve ESI-HPIMS

![Thiodiglycol (TDG) Response Curve ESI-HPIMS](chart)

Calibration:
- Slope: 1.0072
- Interception: 0.0000
- Averaging C: 1

TDG ESI-IMS Calibration Curve

- $y = 1631x + 24.96$
- $R^2 = 0.998$

DIMP in Tap Water with ESI-IMS

- **Intensity (Arb. Units)**:
 - Drift Time (ms): 1, 2, 3, 4, 5, 6, 7, 8, 9

- **Concentration (mg/ml)**:
 - TDG ESI-IMS Calibration Curve

- **Thiodiglycol (TDG)** Response Curve ESI-HPIMS

Data Points:
- Blank 0 ppm DIMP, Tap Water
- 5 ppm DIMP, Tap Water
- 50 ppm DIMP, Tap Water
- Blank HPLC Water

Graphs:
- Total Intensity vs. Concentration (mg/ml)
- Drift Time (ms) vs. Intensity (Arb. Units)
Controlled Substances – Improve Throughput of Forensics Labs

Hallucinogens/Dissociative Drugs
ESI-HPIMS at 180 C

ESI-HPIMS Response Curve for PCP

ESI-IMS of Morphine and Codeine in Urine

Methamphetamine

Cocaine

Δ-9-THC
Controlled Substances – Bath Salts

MW = 221 Butyl1
MW = 275 MDPV

Naph MW = 281
Future Developments

- Reduce Car-mount system to handheld size without compromising performance
- New sample introduction enable direct analysis
- Rapid sample preparation method development

HPIMS can be used for the analysis of solid, liquid, and gas samples

HPIMS from Car-mount to Handheld

DART Ionization for direct sample introduction
Acknowledgement:

DHS: HSHQDC-09-C-00110
EPA: EP-D-10-025
FDA: 1R43FD003502

Thank you.

Excellims Corporation
20 Main Street, Acton, MA 01720