

Reducing False Positives When Monitoring for Low Concentrations of Airborne Organic Chemicals in the Workplace

Gary D. Sides

sidesg@battelle.org

Acronyms

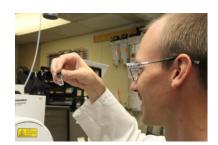
ABCDF	Aberdeen Chemical Agent-Disposal Pilot Plant
ACAMS	Automatic Continuous Air Monitoring System
BGCAPP	Blue Grass Chemical Agent-Disposal Pilot Plant
CAMDS	Chemical Agent Munitions Disposal System
CSD	Chlorine Selective Detector
FPD	Flame Photometric Detector
GC	Gas Chromatography; Gas Chromatographic
LMF	Linear Mass Flow Meter
LMFC	Linear Mass Flow Controller
MINICAMS®	Miniature Automatic Continuous Air Monitoring System
NRT	Near Real Time
PCAPP	Pueblo Chemical Agent-Disposal Pilot Plant
PCT	PreConcentrator Tube —glass tube packed with a solid adsorbent
PM	Preventive Maintenance
PPE	Personal Protective Equipment
STEL	Short Term Exposure Limit
TOCDF	Tooele Chemical-Agent Disposal Facility
WPL	Worker Protection Limit
XSD	Halogen Specific Detector

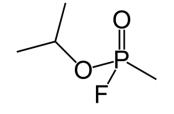
U.S. Stockpile of Chemical Weapons

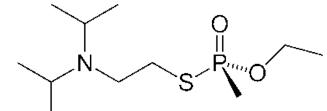
- In 1994, the US stockpile of chemical weapons was formally declared in response to the U.S. signing the Chemical Weapons Convention in 1993.
- The declared US stockpile consisted of a total of 31,000 tons of sarin (GB), mustard (HD), and agent VX and small quantities of Lewisite (L) and tabun (GA).
- As of 2015, only about 3,135 tons of the US stockpile remains to be destroyed

-2,611 tons of HD at Pueblo Chemical Depot

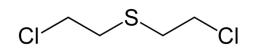
—306 tons of GB, 127 tons of VX, and 91 tons of HD at Bluegrass Army Depot


Examples of activities at disposal sites requiring the protection of workers, the general public, and the environment





Airborne Exposure Limits (AELs)


	GPL	WPL	STEL	SEL	IDLH
GB	0.000001	0.00003	0.0001	0.0003	0.1
VX	0.0000006	0.000001	0.00001	0.0003	0.003
HD	0.00002	0.0004	0.003	0.03	0.7

GB (Sarin)

VX

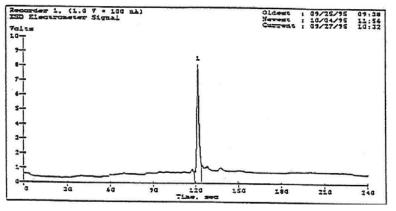
NRT Monitoring Systems for Chemical Agents

ACAMS

- Historically used to monitor at the 15-min Short-Term Exposure Limit (STEL) but, lately, the 8-hr Worker Protection Limit (WPL) also
- Operating principles
- —collection of agent vapors using a solid adsorbent bed
 —thermal desorption and "injection" into a GC column
 —separation by temperature-programmed capillary GC
- -detection using a highly selective GC detector (e.g., an FPD)

MINICAMS®

MINICAMS® is a registered trademark of CMS Research Corporation, Pelham, Alabama

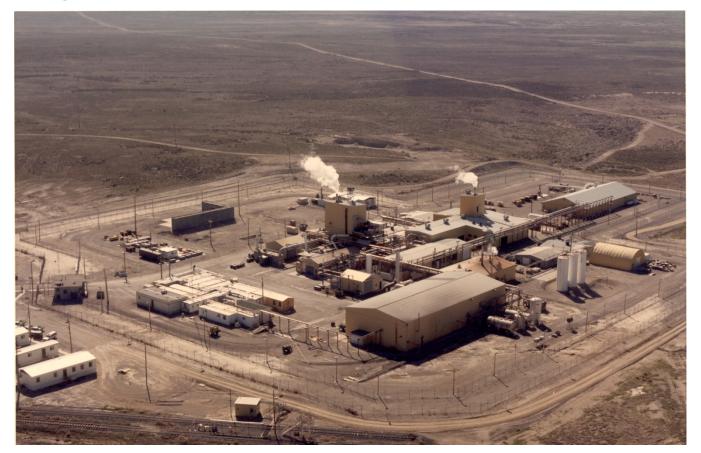

AirAlert™ by Battelle

A Chemical Is Reported as Agent If

- It results in a change in the signal from the GC detector (i.e., a peak in the gas chromatogram) and
- It has a retention time that falls within the selected (preset) retention-time window

Chromatogram courtesy of Sandra Macon, CMS Field Products (OICO)

False Positives

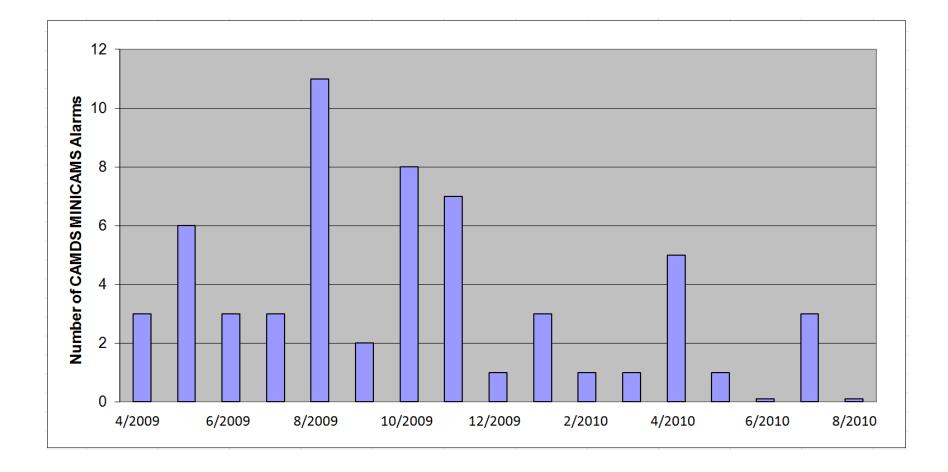

- A false positive occurs if the GC peak observed is not caused by chemical agent
- A false positive may be caused by
- operator error and instrument artifacts
 electronic noise (internal or external to the monitor)
 pressure fluctuations in supplied compressed gases
 other chemicals present in the area sampled
- False positives introduce additional risks, such as

 unnecessary donning of PPE
 reduced confidence in the monitoring system
 potential disruption of agent operations

Chemical Agent Munitions Disposal System (CAMDS) Pilot-Scale Test Facility: Operated 1979 – 2011

A Case Study of False Positives

Monitoring at CAMDS (as of June 2009)


About 20 XSD MINICAMS units, 24/7 HD monitoring at the STEL

About 20 FPD MINICAMS units, 24/7 simultaneous VX/GB monitoring at the STEL

58 False Positives at CAMDS (2009-2010)

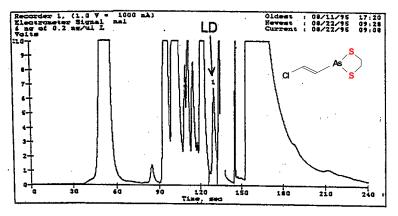
False Positives* at CAMDS by Agent 4/1/2009 – 8/31/2010

Agent	TOTAL	Operator Error	Other Causes
VX	46	3	43
GB	1	0	1 (equipment failure)
VX/GB	7	5	2 (equipment failure)
HD	4	3	1 (chemical interference)

*MINICAMS concentration reports greater than or equal to 0.5 STEL, the alarm level, that were not confirmed

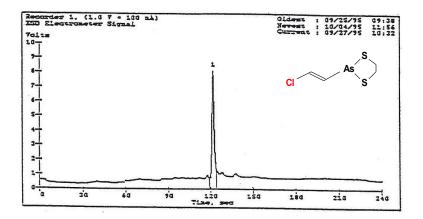
Causes of VX False Positives at CAMDS

16	
2	Correct
3	Improve
umn for VX*	<u>Correct</u>
7	Air comp
5	Adjusted
4	Too freq
4	Precond
3	Light lea
2	Precond
	2 3 umn for VX* 7 5 4 4 4 3


2 <u>Corrective Actions</u>
3 Improved training & aids
for VX* <u>Corrective Actions</u>
7 Air compressor adjustment
5 Adjusted peak width limit
4 Too frequent preventive maintenance
4 Preconditioned PCTs
3 Light leak tests on FPDs
2 Preconditioned V-to-G pads?

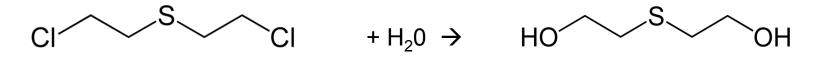
*About 3.5 pg of analyte on column at the alarm level (0.5 STEL)

Approaches to Eliminating False Positives Caused by Chemical Interferences


Chemical False Positives May Sometimes Be Eliminated by Using a Different Detector

Chromatograms courtesy of Sandra Macon, CMS Field Products (OICO)

Detection of Derivatized Lewisite 1 Using an FPD (sulfur mode)

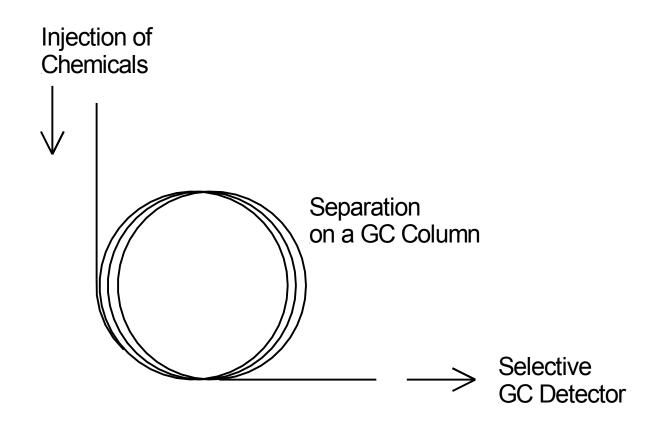


Detection of Derivatized Lewisite 1 Using an XSD (halogen specific detector)

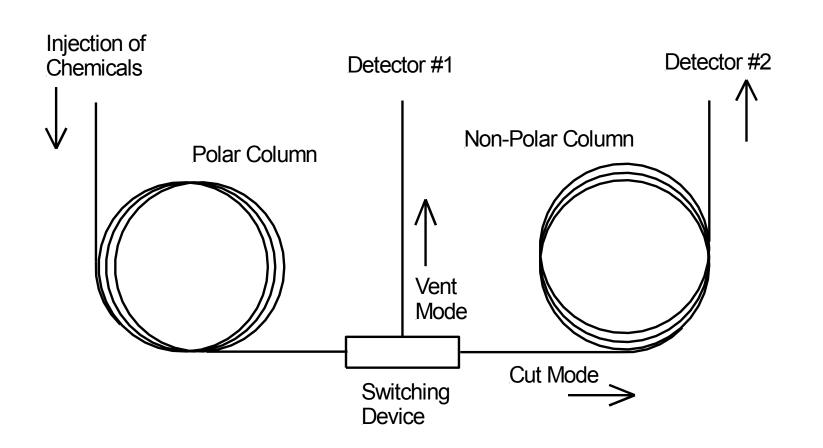
Another Example: HD in the Presence of Thiodiglycol

Hydrolysis of agent mustard (HD) at ABCDF, BGCAPP and PCAPP

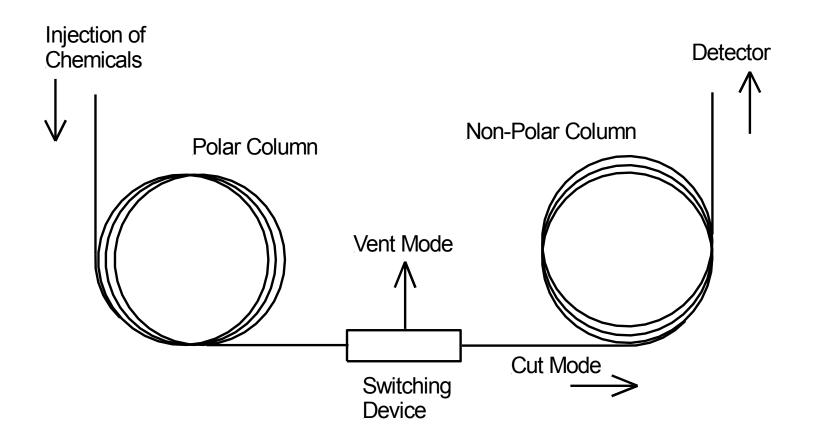
FPD MINICAMS — S



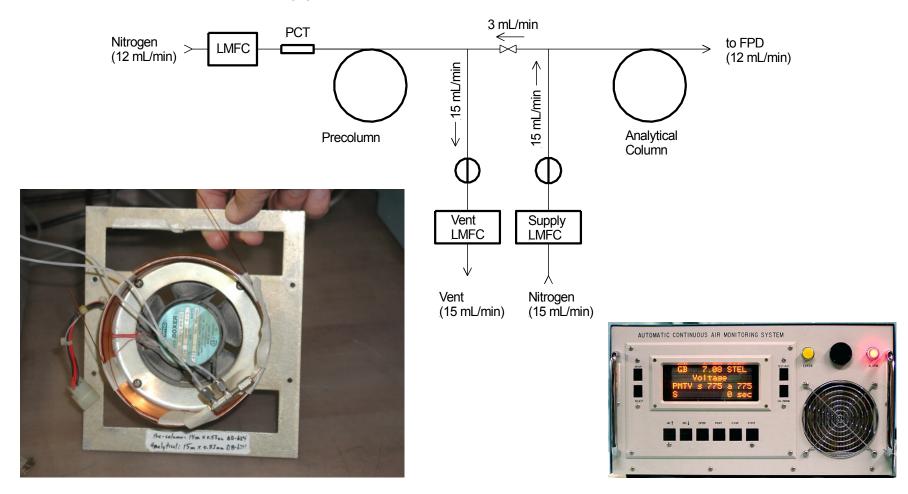
Adding Heart Cut Capability to NRT Monitoring Systems



Separation of Chemicals on a Single GC Column



Conventional Heart Cut Configuration Typical for a Laboratory Gas Chromatograph


Heart Cut without a Second Detector

NRT Monitors Typically Cannot Support a "Mid Point" Detector

Implementation of Heart Cut in the ACAMS

Mid-Point Restrictor Approach—effective during the VX mine drum campaign at TOCDF

Implementation of Heart Cut for the MINICAMS

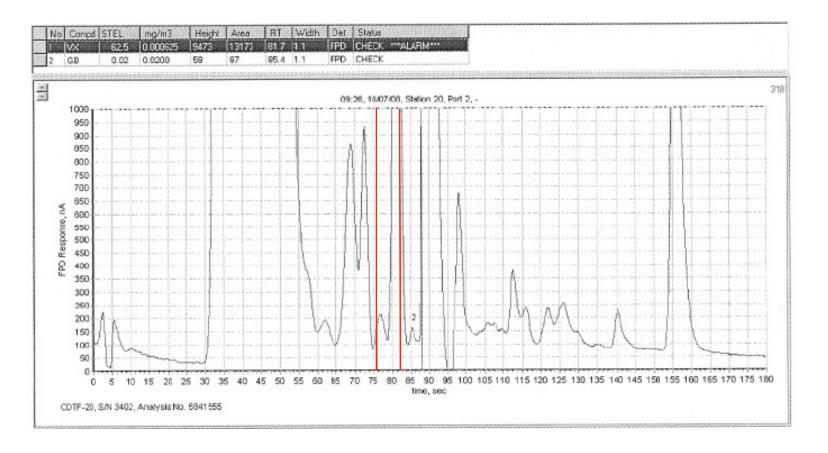
Use of an External Selective Sampler—available from NRT Methodologies, Inc. (Tooele, Utah)

Or any other vacuum-

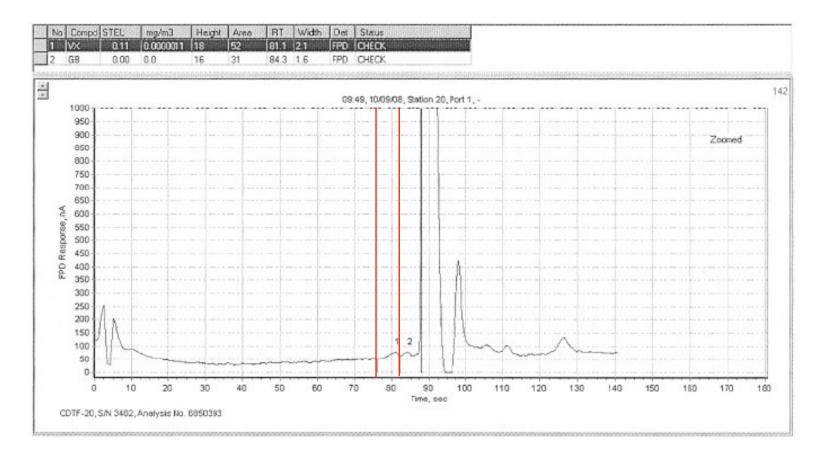
based sampling system

Selective Sampler—simple interface to the MINICAMS

- Sampling on a solid adsorbent bed
- Separation on a polar GC column
- Transfer of chemicals eluting the column only during the heart-cut retention time window

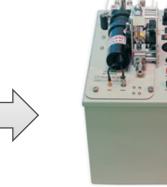


FPD MINICAMS


MINICAMS Chromatogram—without the Selective Sampler

62.5 STEL reported for VX—a false positive

MINICAMS Chromatogram—with the Selective Sampler

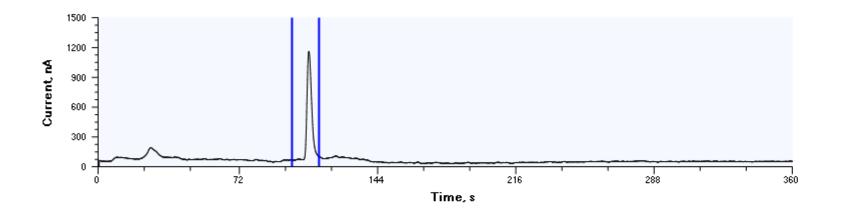

VX concentration report for the same sample matrix only 0.11 STEL

MINICAMS—heart-cut capability with the Selective Sampler

- Simple interface between the MINICAMS and the Selective Sampler
- Selective Sampler is a slave to the MINICAMS cycle
- Requires two MINICAMS instrument cycles for sampling and analysis of a given matrix —one for the Selective Sampler followed by one for the MINICAMS
- Applicable primarily
- -where false positives create public concern (e.g., stack emissions)
- -for sampling complex matrices (e.g., decontaminated waste)
- -clearing contaminated areas through "air washing"

NRT Methodologies, Inc. (Tooele, Utah)

Battelle's AirAlert[™]

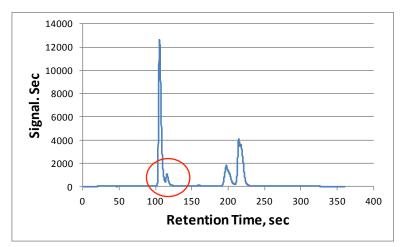

- Flexible sampling and analytical platform with internal space for expansion
- All sampling and analytical components plug-in for ease of replacement
- Readily reconfigured for various applications (removable module)
- Only two surface-mount circuit boards
- Only six simple wiring harnesses
- Lower cost of manufacturing
- Reduced weight (13 pounds)
- 0.7 cubic feet

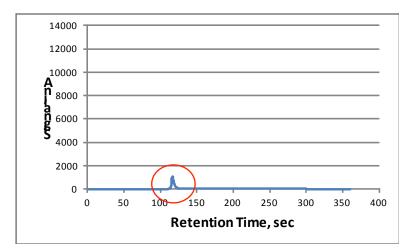
AirAlert—sampling and analytical capabilities

- Spare sampling and analytical modules to minimize down time —replaceable in 5 minutes without the use of any tools
- Sampling and analytical module with a chlorine selective detector (CSD)
- Sampling and analytical module with a flame photometric detector (FPD)

Adding Heart Cut Capability to the AirAlert

Detector 2 P2 Analytical Column Precolumn Precolumn Dean Switch Valve P1


Traditional Dean Switch Approach


AirAlert Dean Switch Approach

Awaiting approval from Battelle's patent attorney's before releasing additional technical details

> Battelle The Business of Innovation

Performance of the Heart Cut for the AirAlert

←No heart cut:

Small analyte peak on the trailing edge of a much larger peak

Chromatograms for same sample matrix with heart cut enabled------

Reduction of False Positives

- Improved operator training—on causes of false positives
- Proper equipment set up—to minimize false positives
- Operator aids (e.g., check lists)—to avoid errors that cause false positives
- Preconditioning of key expendables (e.g., solid adsorbents in PCTs)
- Increased mass on column (e.g., longer sample period)
- Proper set up and control of compressed gases and other utilities
- Integration of heart-cut capability into NRT equipment

Questions?

sidesg@battelle.org

