RAPID ANALYSIS OF SYNTHETIC PYRETHROIDS IN STORMWATER

Rapid Trace Analysis of Synthetic Pyrethroids in Stormwater Using online pre-concentration followed by Liquid Chromatography-Tandem Mass Spectrometry

David Schiessel, Senior Chemist
dschiessel@babcocklabs.com
Babcock Laboratories, Inc.
6100 Quail Valley Court
Riverside, CA 92507
951-653-3351 ext.268
Outline

- What are synthetic pyrethroids?
- Why develop a new method?
- Pyrethroid use, toxicity, and occurrences
- Analytical considerations; reference material stability and instrument robustness
- Why choose LC-MS-MS? Current methods.
- Equipment and analytical method
- Method Performance; successes and challenges
What are synthetic pyrethroids?

Bifenthrin
Fenpropathrin
Deltamethrin

λ-Cyhalothrin
Esfenvalerate

Cyfluthrin
Cypermethrin
Permethrin
Why develop a new method?

Client Needs

Regulation & Permits
Basin Plan Obj, NPDES, MS4

Usage

Toxicity Research
Where are these contaminants coming from?
Pyrethroid Use in CA for Structural Pest Control

Data from CALPIP (2013)
Toxicity Data

<table>
<thead>
<tr>
<th>Pyrethroid</th>
<th>LC$_{50}$ Hyalella Azteca, ng/L</th>
<th>5-10th % LC$_{50}$</th>
<th>PAL Benchmark (Invert.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permethrin</td>
<td>$39.1^{(1,4)}$</td>
<td>$35 - 76^{(5)}$</td>
<td>$1.4^{(6)}$</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>$2.2^{(1,4)}$</td>
<td>$<3.8 - 15^{(5)}$</td>
<td>$1.3^{(6)}$</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>$2.0^{(3)}$</td>
<td>$3 - 6.4^{(5)}$</td>
<td>$69^{(6)}$</td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>$8.7^{(1,4)}$</td>
<td>$<4 - 12^{(5)}$</td>
<td>$7.4^{(6)}$</td>
</tr>
<tr>
<td>Cyhalothrin-λ</td>
<td>$1.4^{(1,4)}$</td>
<td>$<4 - 10^{(5)}$</td>
<td>$2.0^{(6)}$</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>$1.1^{(1,4)}$</td>
<td>$3 - 9^{(5)}$</td>
<td>$4.1^{(6)}$</td>
</tr>
<tr>
<td>Esfenvalerate</td>
<td>$3.5-8.0^{(2,4)}$</td>
<td>$3 - 8^{(5)}$</td>
<td>$17^{(6)}$</td>
</tr>
</tbody>
</table>

6) http://www.epa.gov/oppefed1/ecorisk_ders/aquatic_life_benchmark.htm
Historical Data

Occurrences in water samples

- **Bifenthrin**
 - 61% <MDL
 - 14% J Flag
 - 10% 1-5
 - 9% 5-10
 - 6% 10-50
 - 4% >50

- **Permethrin**
 - 77% <MDL
 - 11% J Flag
 - 7% 1-5
 - 3% 5-10
 - 2% 10-50
 - 1% >50

Data from Babcock Laboratories since 2012
How low can we go?

- At or below acute toxicity values
- Be able to differentiate sample from blank (ultra low levels)
- Be able to recover analytes at low levels with accuracy and precision in matrix
How low can we go?

- At or below acute toxicity values
- Be able to differentiate sample from blank (ultra low levels)
- Be able to recover analytes at low levels with accuracy and precision in matrix

1.0 ng/L
Other considerations

- Aquatic toxicity studies vary
- Pyrethroids extremely lipophilic
- Certain SP’s degrade through hydrolysis or photolysis (Laskowski, 4)
- Absorption in sediment, suspended solids
- Pyrethroids can be a mixture of 2-8 stereoisomers
Current Methods

<table>
<thead>
<tr>
<th>Analyte</th>
<th>USGS (GCMSMS)</th>
<th>CDFG (GCMSMS-ECNI)</th>
<th>CDFG (GC-ECD)</th>
<th>CA Dept. Food & Agri. (GC-ECD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permethrins</td>
<td>2.0, 0.6</td>
<td>1.0, 5.0, 3.0</td>
<td>15, 3.5</td>
<td></td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>2.0, 0.7</td>
<td>0.10, 1.0, 0.5</td>
<td>5.0, 1.8</td>
<td></td>
</tr>
<tr>
<td>Cypermethrins</td>
<td>5.0, 1.1</td>
<td>0.20, 4.0, 2.0</td>
<td>15, 1.8</td>
<td></td>
</tr>
<tr>
<td>Cyhalothrins</td>
<td>2.0, 0.5</td>
<td>0.20, 2.0, 1.0</td>
<td>15, 1.1</td>
<td></td>
</tr>
<tr>
<td>Fenvalerates</td>
<td>2.0, 0.5</td>
<td>0.05, 2.0, 1.0</td>
<td>15, 1.8</td>
<td></td>
</tr>
<tr>
<td>Fenproparthrin</td>
<td>2.0, 0.6</td>
<td>NA, 4.0, 2.0</td>
<td>15, 1.5</td>
<td></td>
</tr>
<tr>
<td>Cyfluthrins</td>
<td>5.0, 1.1</td>
<td>0.20, 4.0, 2.0</td>
<td>15, 1.7</td>
<td></td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>2.0, 0.6</td>
<td>0.15, 4.0, 2.0</td>
<td>15, 1.9</td>
<td></td>
</tr>
</tbody>
</table>

Babcock Methods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RL (ng/L)</td>
<td>MDL (ng/L)</td>
<td>RL (ng/L)</td>
</tr>
<tr>
<td>Permethrins</td>
<td>1.0</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>1.0</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Cypermethrins</td>
<td>1.0</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Cyhalothrins</td>
<td>1.0</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Fenvalerates</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Fenpropathrin</td>
<td>1.0</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Cyfluthrins</td>
<td>1.0</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>1.0</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
</tbody>
</table>
Why choose LC-MS-MS?

- Availability; other work with drinking water UCMR₃, PPCPs
- Sensitivity/robustness challenges of GC-MS-MS or GC-MS-ECNI
- Few compounds that can’t be analyzed; adaptable to new targets
- Adaptable to chiral analysis
- Future in environmental analysis? Detecting known unknowns.
Equipment

- Thermo Scientific TSQ Quantum Ultra
- (2) HPLC Pumps Accela 600 and 1250
- CTC PAL Autosampler equipped with two valves
- Phenomenex Kinetex 2.6um Phenyl-Hexyl
- Thermoscientific HESI-II Probe
LC Parameters

- Variable flow rate (0.2-0.5-0.2mL/min)
- High flow loading - 5.0mL of 100% aqueous sample
- Online SPE using Hypersil 12µm aQ Gold columns (Thermo)
- SPE elution with mobile phase; methanol, water, and 0.002% ammonium hydroxide, elution focusing with ACN
MS Parameters

- Analytes all detected as [M+NH$_4$]$^+$
- Desolvation Temp: 250C
- Sheath gas: 40arb, Aux Gas: 40arb
- Capillary Temp: 225C
- CID pressure: 1.0mTorr Argon
- All collision energies optimized by direct infusion with eluent
Online SPE (Load)

- HPLC pump
- analytical column
- Aux pump
- 5mL syringe
- waste
- 5mL Loop

Diagram showing the connection between the HPLC pump, analytical column, Aux pump, 5mL syringe, and waste.
Online SPE (Transfer)

- **matrix** to waste
- HPLC pump
- **analytical column**
- **valve1 switch**
- **5mL syringe**
- waste
- Aux pump
- **online SPE**
- **5mL Loop**

- 91x508
Online SPE (Transfer)

- 5mL syringe
- waste
- valve1 switch
- Aux pump
- 5mL Loop
- HPLC pump
- matrix to waste
- analytical column
- online SPE
Online SPE (Elute)

- HPLC pump
- Analytical column
- Valve 2 switch
- Aux pump
- 5mL syringe
- Waste
- Matrix to waste
QED Scan - Bifenthrin

- **Test06 #8793**
 - RT: 9.64
 - AV: 1
 - NL: 7.77E3

- **F+: c ESI d Full ms2 440.200 [50.000-550.000]**
 - M+18
 - M+H

- **m/z** values:
 - 181.13
 - 218.26
 - 232.77
 - 267.28
 - 306.94
 - 354.74
 - 409.17
 - 423.03
 - 440.30
 - 480.16
 - 523.63
 - 545.39
 - 57.53
 - 93.14
 - 141.45
 - 218.26
 - 267.28
 - 306.94
 - 354.74
 - 409.17
 - 423.03
 - 440.30
 - 480.16
 - 523.63
 - 545.39

- **Relative Abundance**:
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25
 - 30
 - 35
 - 40
 - 45
 - 50
 - 55
 - 60
Permethrin – 1.0ng/L

RT: 10.59
AA: 162091
SN: 1360

1.88E4
TIC F: + c ESI
SRM ms2
408.100
[183.099-
183.101] MS
ICIS Test08
Fipronil + Degs – 1.0 ng/L

RT: 4.00 - 8.00

Fipronil
RT: 5.90
AA: 32772

Fipronil Sulfide
RT: 6.17
AA: 44865

Fipronil Sulfone
RT: 6.37
AA: 28473

Fipronil Desulfanyl
RT: 5.82
AA: 56376

NL: 9.87E3
TIC F: - c ESI
SRM ms2 434.800
[329.999 - 330.001] MS
ICIS Test08

NL: 1.25E4
TIC F: - c ESI
SRM ms2 418.800
[261.999 - 262.001] MS
ICIS Test08

NL: 8.30E3
TIC F: - c ESI
SRM ms2 450.800
[281.999 - 282.001] MS
ICIS Test08

NL: 1.55E4
TIC F: - c ESI
SRM ms2 386.800
[350.999 - 351.001] MS
ICIS Test08
Blank Spike Data

<table>
<thead>
<tr>
<th>CA Rank</th>
<th>Analyte</th>
<th>Spike Conc (ng/L)</th>
<th>Rep1 (ng/L)</th>
<th>Rep2 (ng/L)</th>
<th>Rep3 (ng/L)</th>
<th>Rep4 (ng/L)</th>
<th>Avg % Rec</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Permethrins</td>
<td>10</td>
<td>9.2</td>
<td>8.7</td>
<td>9.4</td>
<td>9.4</td>
<td>92%</td>
<td>3.2%</td>
</tr>
<tr>
<td>2</td>
<td>Bifenthrin</td>
<td>10</td>
<td>10.2</td>
<td>9.4</td>
<td>10.6</td>
<td>9.9</td>
<td>100%</td>
<td>5.2%</td>
</tr>
<tr>
<td>3</td>
<td>Cypermethrins</td>
<td>10</td>
<td>10.0</td>
<td>8.5</td>
<td>9.8</td>
<td>9.6</td>
<td>95%</td>
<td>7.2%</td>
</tr>
<tr>
<td>4</td>
<td>Cyhalothrins</td>
<td>10</td>
<td>9.6</td>
<td>8.9</td>
<td>10.1</td>
<td>10.3</td>
<td>97%</td>
<td>6.5%</td>
</tr>
<tr>
<td>5</td>
<td>Fenvalerates</td>
<td>10</td>
<td>10.0</td>
<td>7.6</td>
<td>8.8</td>
<td>8.6</td>
<td>88%</td>
<td>11%</td>
</tr>
<tr>
<td>6</td>
<td>Fenpropathrin</td>
<td>10</td>
<td>8.1</td>
<td>7.9</td>
<td>8.4</td>
<td>8.5</td>
<td>82%</td>
<td>3.4%</td>
</tr>
<tr>
<td>7</td>
<td>Cyfluthrins</td>
<td>10</td>
<td>10.8</td>
<td>7.9</td>
<td>9.8</td>
<td>9.3</td>
<td>94%</td>
<td>13%</td>
</tr>
<tr>
<td>8</td>
<td>Deltamethrin</td>
<td>10</td>
<td>9.3</td>
<td>7.6</td>
<td>8.5</td>
<td>8.3</td>
<td>85%</td>
<td>8.4%</td>
</tr>
<tr>
<td>9</td>
<td>Sumithrin</td>
<td>10</td>
<td>11.8</td>
<td>11.0</td>
<td>12.2</td>
<td>12.1</td>
<td>118%</td>
<td>4.5%</td>
</tr>
<tr>
<td>10</td>
<td>tau-Fluvalinate</td>
<td>10</td>
<td>9.4</td>
<td>6.6</td>
<td>8.6</td>
<td>10.8</td>
<td>88%</td>
<td>20%</td>
</tr>
<tr>
<td>11</td>
<td>Prallethrin</td>
<td>10</td>
<td>9.7</td>
<td>8.9</td>
<td>9.7</td>
<td>10.1</td>
<td>96%</td>
<td>5.1%</td>
</tr>
<tr>
<td>12</td>
<td>Resmethrin</td>
<td>10</td>
<td>11.8</td>
<td>11.4</td>
<td>12.6</td>
<td>12.7</td>
<td>121%</td>
<td>5.2%</td>
</tr>
<tr>
<td>13</td>
<td>Allethrin</td>
<td>10</td>
<td>9.2</td>
<td>8.8</td>
<td>9.4</td>
<td>9.7</td>
<td>93%</td>
<td>4.1%</td>
</tr>
<tr>
<td>14</td>
<td>Tralomethrin</td>
<td>10</td>
<td>11.8</td>
<td>12.9</td>
<td>12.7</td>
<td>11.7</td>
<td>123%</td>
<td>5.1%</td>
</tr>
<tr>
<td>15</td>
<td>Tetramethrin</td>
<td>10</td>
<td>12.0</td>
<td>12.1</td>
<td>12.7</td>
<td>13.6</td>
<td>126%</td>
<td>5.8%</td>
</tr>
<tr>
<td>NA</td>
<td>Acrinathrin</td>
<td>10</td>
<td>12.4</td>
<td>10.3</td>
<td>11.9</td>
<td>11.8</td>
<td>116%</td>
<td>7.9%</td>
</tr>
<tr>
<td>NA</td>
<td>Cyphenothrin</td>
<td>10</td>
<td>12.1</td>
<td>11.2</td>
<td>11.9</td>
<td>11.7</td>
<td>117%</td>
<td>3.1%</td>
</tr>
<tr>
<td>NA</td>
<td>Etofenprox</td>
<td>10</td>
<td>9.5</td>
<td>8.8</td>
<td>9.7</td>
<td>9.5</td>
<td>94%</td>
<td>4.4%</td>
</tr>
<tr>
<td>NA</td>
<td>Flucythrinate</td>
<td>10</td>
<td>10.6</td>
<td>11.1</td>
<td>12.8</td>
<td>13.8</td>
<td>121%</td>
<td>12%</td>
</tr>
<tr>
<td>NA</td>
<td>Kadethrin</td>
<td>10</td>
<td>8.6</td>
<td>8.7</td>
<td>9.5</td>
<td>10.4</td>
<td>93%</td>
<td>8.8%</td>
</tr>
<tr>
<td>-</td>
<td>Permethrin-13C6 (Surr)</td>
<td>10</td>
<td>9.8</td>
<td>10.3</td>
<td>10.6</td>
<td>10.7</td>
<td>104%</td>
<td>3.6%</td>
</tr>
</tbody>
</table>
Matrix Spike Data

Simulated Matrix with 25mg/L TSS, 10.0 NTU

<table>
<thead>
<tr>
<th>CA Rank</th>
<th>Analyte</th>
<th>Spike Conc (ng/L)</th>
<th>Rep1 (ng/L)</th>
<th>Rep2 (ng/L)</th>
<th>Rep3 (ng/L)</th>
<th>Rep4 (ng/L)</th>
<th>Avg % Rec</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Permethrins</td>
<td>10</td>
<td>8.6</td>
<td>9.1</td>
<td>9.0</td>
<td>8.6</td>
<td>88%</td>
<td>3.1%</td>
</tr>
<tr>
<td>2</td>
<td>Bifenthrin</td>
<td>10</td>
<td>9.9</td>
<td>10.3</td>
<td>10.1</td>
<td>9.7</td>
<td>100%</td>
<td>2.9%</td>
</tr>
<tr>
<td>3</td>
<td>Cypermethrins</td>
<td>10</td>
<td>7.4</td>
<td>8.6</td>
<td>8.4</td>
<td>8.2</td>
<td>82%</td>
<td>6.2%</td>
</tr>
<tr>
<td>4</td>
<td>Cyhalothrins</td>
<td>10</td>
<td>9.9</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>111%</td>
<td>8.1%</td>
</tr>
<tr>
<td>5</td>
<td>Fenvalerates</td>
<td>10</td>
<td>9.1</td>
<td>10.9</td>
<td>10.5</td>
<td>8.8</td>
<td>98%</td>
<td>11%</td>
</tr>
<tr>
<td>6</td>
<td>Fenpropathrin</td>
<td>10</td>
<td>7.9</td>
<td>8.7</td>
<td>9.6</td>
<td>9.5</td>
<td>89%</td>
<td>9.2%</td>
</tr>
<tr>
<td>7</td>
<td>Cyfluthrins</td>
<td>10</td>
<td>7.8</td>
<td>10.2</td>
<td>11.5</td>
<td>13.0</td>
<td>106%</td>
<td>21%</td>
</tr>
<tr>
<td>8</td>
<td>Deltamethrin</td>
<td>10</td>
<td>7.4</td>
<td>8.2</td>
<td>7.9</td>
<td>7.5</td>
<td>78%</td>
<td>4.7%</td>
</tr>
<tr>
<td>9</td>
<td>Sumithrin</td>
<td>10</td>
<td>9.3</td>
<td>9.8</td>
<td>9.9</td>
<td>9.6</td>
<td>96%</td>
<td>2.5%</td>
</tr>
<tr>
<td>10</td>
<td>tau-Fluvalinate</td>
<td>10</td>
<td>8.2</td>
<td>9.6</td>
<td>7.4</td>
<td>8.8</td>
<td>85%</td>
<td>11%</td>
</tr>
<tr>
<td>11</td>
<td>Prallethrin</td>
<td>10</td>
<td>5.3</td>
<td>5.6</td>
<td>6.1</td>
<td>6.4</td>
<td>59%</td>
<td>8.3%</td>
</tr>
<tr>
<td>12</td>
<td>Resmethrin</td>
<td>10</td>
<td>8.3</td>
<td>7.9</td>
<td>9.2</td>
<td>8.5</td>
<td>85%</td>
<td>6.7%</td>
</tr>
<tr>
<td>13</td>
<td>Allethrin</td>
<td>10</td>
<td>7.1</td>
<td>6.8</td>
<td>7.8</td>
<td>7.3</td>
<td>73%</td>
<td>5.5%</td>
</tr>
<tr>
<td>14</td>
<td>Tralomethrin</td>
<td>10</td>
<td>9.7</td>
<td>10.5</td>
<td>10.6</td>
<td>10.2</td>
<td>103%</td>
<td>3.8%</td>
</tr>
<tr>
<td>15</td>
<td>Tetramethrin</td>
<td>10</td>
<td>6.3</td>
<td>6.7</td>
<td>7.6</td>
<td>6.8</td>
<td>68%</td>
<td>7.9%</td>
</tr>
<tr>
<td>NA</td>
<td>Acrinathrin</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>110%</td>
<td>6.2%</td>
</tr>
<tr>
<td>NA</td>
<td>Cyphenothrin</td>
<td>10</td>
<td>8.4</td>
<td>9.0</td>
<td>9.0</td>
<td>8.6</td>
<td>87%</td>
<td>3.2%</td>
</tr>
<tr>
<td>NA</td>
<td>Etofenprox</td>
<td>10</td>
<td>7.7</td>
<td>7.8</td>
<td>8.3</td>
<td>8.1</td>
<td>80%</td>
<td>3.5%</td>
</tr>
<tr>
<td>NA</td>
<td>Flucythrinate</td>
<td>10</td>
<td>8.4</td>
<td>8.5</td>
<td>9.0</td>
<td>9.4</td>
<td>88%</td>
<td>5.2%</td>
</tr>
<tr>
<td>NA</td>
<td>Kadethrin</td>
<td>10</td>
<td>7.5</td>
<td>8.2</td>
<td>10.7</td>
<td>10.1</td>
<td>91%</td>
<td>17%</td>
</tr>
<tr>
<td>NA</td>
<td>- Permethrin-13C6 (Surr)</td>
<td>10</td>
<td>9.6</td>
<td>9.4</td>
<td>9.2</td>
<td>9.0</td>
<td>93%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>
Analyte Stability

Simulated Matrix with 25mg/L TSS, 10.0 NTU

<table>
<thead>
<tr>
<th>CA Rank</th>
<th>Analyte</th>
<th>Spike Conc (ng/L)</th>
<th>Day 0 (%Rec)</th>
<th>Day 1 (%Rec)</th>
<th>Day 4 (%Rec)</th>
<th>Day 6 (%Rec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Permethrins</td>
<td>20</td>
<td>93%</td>
<td>85%</td>
<td>71%</td>
<td>70%</td>
</tr>
<tr>
<td>2</td>
<td>Bifenthrin</td>
<td>20</td>
<td>92%</td>
<td>82%</td>
<td>70%</td>
<td>91%</td>
</tr>
<tr>
<td>3</td>
<td>Cypermethrins</td>
<td>20</td>
<td>93%</td>
<td>89%</td>
<td>82%</td>
<td>73%</td>
</tr>
<tr>
<td>4</td>
<td>Cyhalothrins</td>
<td>20</td>
<td>93%</td>
<td>80%</td>
<td>98%</td>
<td>94%</td>
</tr>
<tr>
<td>5</td>
<td>Fenvalerates</td>
<td>20</td>
<td>88%</td>
<td>80%</td>
<td>53%</td>
<td>58%</td>
</tr>
<tr>
<td>6</td>
<td>Fenpropathrin</td>
<td>20</td>
<td>101%</td>
<td>92%</td>
<td>103%</td>
<td>78%</td>
</tr>
<tr>
<td>7</td>
<td>Cyfluthrins</td>
<td>20</td>
<td>93%</td>
<td>96%</td>
<td>103%</td>
<td>90%</td>
</tr>
<tr>
<td>8</td>
<td>Deltamethrin</td>
<td>20</td>
<td>103%</td>
<td>105%</td>
<td>89%</td>
<td>96%</td>
</tr>
<tr>
<td>-</td>
<td>Permethrin-13C6 (Surr)</td>
<td>10</td>
<td>109%</td>
<td>103%</td>
<td>96%</td>
<td>107%</td>
</tr>
</tbody>
</table>

Stored in 40mL unpreserved VOA vials in refrigerator
Analytical Challenges

- CRM Availability
- Low response from Cyfluthrin/Esfenvalerate
- CRM Degradation; α-cyano pyrethroids form a carboximidate(?) in methanol
- Stereoisomer confusion/labeling
- Unable to do tefluthrin or transfluthrin by ESI
- Preservation (tetramethrin issues)
- Solubility very low and Log(P) high
Developments

- Holding time study and preservation study of simulated matrix with ACN keeper
- Split samples from UC Davis last fall for bioswales.
- Try different online SPE media or analytical column
- Apply method to Fipronil and degradates
- Analyte confirmation
- Chiral separation
Developments

- Holding time study and preservation study of simulated matrix with ACN keeper
- Split samples from UC Davis last fall for bioswales. Mixed results from split lab
- Try different online SPE media or analytical column – Done
- Apply method to Fipronil and degradates - Done
- Analyte confirmation – Done
- Chiral separation – Limited success
References

6) EPA Aquatic Life Benchmark List http://www.epa.gov/oppefed1/ecorisk_ders/aquatic_life_benchmark.htm