

PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

Overcoming cost and Supply:

Let's Use Nitrogen

NEMC, 2015 Chicago, IL

Jacob Rebholz, Roger Bardsley and Tom Hartlein, Teledyne Tekmar Lee Marotta, PerkinElmer

PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

Why?

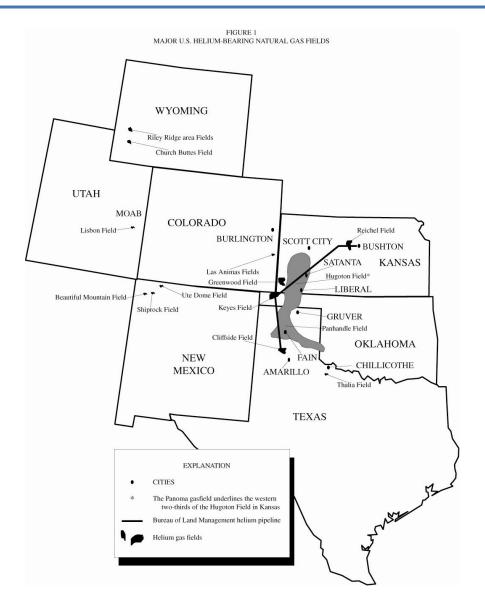
Supply concern and cost of helium

Space

Element	Abundance (%)		
Hydrogen	73.9		
Helium	24		
Oxygen	1.07		
Carbon	0.46		
Neon	0.13		
Iron	0.11		
Nitrogen	0.1		
Silicon	0.07		
Magnesium	0.06		
Sulfur	4		
Others	0.07		

Slide courtesy of Andy Tipler, PerkinElmer Scientist

A1689-zD1



Gas	Abundance (%)		
Nitrogen	78.08		
Oxygen	20.95		
Argon	0.93		
Carbon Dioxide	0.04		
Neon	0.0018		
Helium	0.00052		
Methane	0.00017		
Krypton	0.00011		
Hydrogen	0.000055		
Water	~ 1		

- **USA** (83%)
- Algeria (11%)
- Canada
- Poland
- Russia
- Qatar

Application	Usage (%)
Lifting	15.1
Magnetic Resonance Imaging (MRI)	15.0
Welding	14.9
Chromatography	7.6
Heat Transfer	6.4
Leak Detection	5.6
Pressurizing	5.5
Fibre Optics	4.1
Diving Mixtures	4.0
Superconductors	2.9
Inert Atmospheres	2.7
Nuclear Magnetic Resonance (NMR)	1.3
Other	14.9

Purge and Trap (P & T)

PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

The question?

Should chromatographers be investigating alternative suitable carrier gases?

 The goal of this research was to investigate the use of alternative carrier gases while meeting method criteria.

- Helium is the referee.
 Hydrogen and nitrogen were investigated.
- Nitrogen may be our best choice!

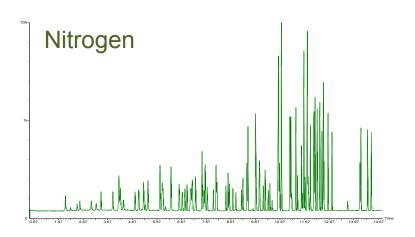
Parameter	Helium	Hydrogen	Nitrogen
Safety	Safe	Caution	Safe
Source	Cylinder	Cylinder or Generator	Cylinder or Generator
Cost	Expensive	Cost Effective	Cost Effective
Supply	Concern	n/a	n/a
Column choices	Wide to narrow bore	Narrow bore	Narrow bore
Inertness	Inert	Highly Reactive	Inert
BFB/DFTPP	Passes	Passes	Passes

Hydrogen:

- Possible protonation
- 2 to 4 times reduction in response.

Nitrogen:

- Chromatography efficiency
- 15 times reduction in response



PerkinElmer Gas Chromatograph / Mass Spectrometer (GC/MS)

Summary of Results

- Met all EPA criteria in nitrogen and hydrogen
- Peak efficiency is Great!
- Reporting limits of 0.5 ppb were achieved in all carrier gas
- Nitrogen, more inert than hydrogen, perhaps the best choice!

Thank you!

... efficient, environmentally friendly, cost effective approach

Looking forward to seeing you at our poster for discussion and review of data and research!

Contact info Jacob.Rebholz@Teledyne.com Lee.marotta@perkinelmer.com