

Passive Sampling Demonstration/Validation for Vapor Intrusion Assessments

Todd McAlary and H. Groenevelt, Geosyntec Consultants, Inc., T. Gorecki and S. Seethapathy, University of Waterloo, D. Crump, Cranfield University, P. Sacco, Fondazione Salvatore Maugeri, H. Hayes, Air Toxics Limited, M. Tuday, Columbia Analytical Services, B. Schumacher, USEPA, P. Johnson, Arizona State University

NEMC Chicago 16 July 2015

Benefits of Passive Sampling

- Simple (minimal training, less risk of leaks)
- Time-weighted average concentration (up to a week or a month if needed)
- Low reporting limits with no premium cost
- Smaller easy to ship, discrete to deploy
- Long history of use in Industrial Hygiene
- Less expensive
- Other benefits unique to each sampler

Passive Samplers Tested

3

Differences: size, uptake rates, sorbents, medium of uptake, method of analysis

TO-17 Sorbent Selection

Carbopack X

Desorption Temperature: 330 °C

Surface Area: 240 m²/g

(Graphitized Carbon Black)

Carbopack B

(Graphitized Carbon Black) Surface Area: 100 m²/g Desorption Temperature: 330 °C

	Challenge Volume (Liters)					
	0.2	1	5	10	20	100
Halocarbon 12						
Chloromethane						
Halocarbon 114						
Vinyl chloride						
1,3-Butadiene						
Bromomethane						
Chloroethane						
Halocarbon 11						
Acrylonitrile						
1,1-Dichloroethene						
Methylene chloride						
3-Chloropropene						
Halocarbon 113						
1,1-Dichloroethane						
cis-1,2-Dichloroethene						
Chloroform						
1,2-Dichloroethane						
1,1,1-Trichloroethane						
Benzene						
Carbon tetrachloride						
1,2-Dichloropropane						
Trichloroethene						
cis-1,3-Dichloropropene						
trans-1,3-Dichloropropene						
1,1,2-Trichloroethane						
Toluene						
1,2-Dibromoethane						
Tetrachloroethene						
Chlorobenzene						
Ethylbenzene						
m & p-Xylene						
Styrene						
1,1,2,2-Tetrachlorethane						
o-Xylene						
4-Ethyltoluene						
1,3,5-Trimethylbenzene						
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene						
1,4-Dichlorobenzene						
1,2-Dichlorobenzene						
1,2,4-Trichlorobenzene						
Hexachlorobutadiene						

Challenge Volume (Liters) 0.2 5 10 20 100 Halocarbon 12 Chloromethane Halocarbon 114 Vinyl chloride 1,3-Butadiene Bromomethane Chloroethane Halocarbon 11 Acrylonitrile 1,1-Dichloroethene Methylene chloride 3-Chloropropene Halocarbon 113 1,1-Dichloroethane cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon tetrachloride 1,2-Dichloropropane Trichloroethene cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene 1,2-Dibromoethane Tetrachloroethene Chlorobenzene Ethylbenzene m & p-Xylene Styrene 1,1,2,2-Tetrachlorethane o-Xylene 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1.2.4-Trichlorobenzene Hexachlorobutadiene

Laboratory Test Compound List

Analyte	Koc (mL/g)	OSWER indoor conc. at 10 ⁻⁶ risk (ppb)	Vapor pressure (atm)	Water solubility (g/l)
1,1,1-Trichloroethane	110	400	0.16	1.33
1,2,4-Trimethylbenzene	472	1.2	0.00197	0.0708
1,2-Dichloroethane	174	0.023	0.107	8.52
2-Butanone (MEK)	134	340	0.1026	~ 256
Benzene	59	0.10	0.125	1.75
Carbon tetrachloride	174	0.026	0.148	0.793
Naphthalene	2,000	0.57	0.000117	0.031
n-Hexane	3,000	57	0.197	0.0128
Tetrachloroethene	155	0.12	0.0242	0.2
Trichloroethene	166	0.22	0.0948	1.1

Passive Sampler Calibration

5 samplers in triplicate 10 Compounds High, Medium and Low: Concentration, Face Velocity, Temperature, Relative Humidity, Duration

> 24 chambers x 5 sampler types x 3 replicates x 10 chemicals = 3600 data points

Inter-laboratory Test

Fractional Factorial Testing

Run #	Approximate	Approximate	Face Velocity	Duration	Approximate
	Concentration	Temperature	(m/s)	(days)	Humidity
	(ppbv)	(°C)			(%R.H.)
1	100	17	0.41	1	90
2	1	17	0.014	1	90
3	100	30	0.41	1	30
4	1	30	0.014	1	30
5	100	30	0.41	7	90
6	1	30	0.014	7	90
7	100	17	0.41	7	30
8	1	17	0.014	7	30
9	50	20	0.23	4	60
10	50	20	0.23	4	60
11	100	17	0.014	1	30
12	1	17	0.41	1	30
13	100	17	0.014	7	90
14	1	17	0.41	7	90
15	100	30	0.014	7	30
16	1	30	0.41	7	30
17	100	30	0.014	1	90
18	1	30	0.41	1	90

Center-Point Results

Results only for the center-point tests (all factors at middle of ranges)

(note scales are linear)

ATD Tenax TA

ATD Carbopack B

SKC Ultra

Waterloo Membrane Sampler

Radiello

Inter-Chamber Precision

	Mean Intra-Chamber Coefficient of Variation (COV)						
Compound	ATD: Carbopack B	ATD: Tenax	WMS	Radiello	SKC	Active ATD/ Calculated	
111TCA	7%	3%	7%	5%	14%	13%	
124TMB	5%	5%	7%	4%	22%	7%	
12DCA	8%	3%	6%	4%	12%	9%	
MEK	47%	5%	13%	11%	23%	15%	
СТ	4%	6%	8%	4%	8%	12%	
HEX	7%	2%	7%	7%	16%	7%	
BENZ	5%	6%	12%	3%	10%	6%	
NAPH	6%	12%	7%	6%	16%	7%	
PCE	2%	3%	6%	3%	6%	5%	
TCE	3%	2%	5%	3%	16%	5%	
Mean intra-chamber COV is the average of 24 COV values, from three replicates in each chamber							
Bold : COV value meeting the success criterion ($< 30\%$)							

Intra-Chamber Precision

Mean inter-	Mean Inter-Chamber Coefficient of Variation (COV)						
chamber COV	ATD: Carbopack B	ATD: Tenax	WMS	Radiello	SKC	Active ATD/ Calculated	
111TCA	24%	27%	26%	35%	51%	18%	
124TMB	12%	16%	42%	25%	55%	17%	
12DCA	31%	32%	35%	28%	61%	23%	
MEK	88%	69%	116%	70%	65%	19%	
СТ	25%	26%	31%	28%	59%	19%	
HEX	37%	45%	56%	28%	39%	27%	
BENZ	25%	31%	26%	16%	40%	19%	
NAPH	18%	25%	128%	46%	58%	17%	
PCE	13%	14%	34%	27%	26%	18%	
TCE	11%	17%	34%	30%	51%	16%	
Inter-chamber COV is the COV of 24 average C/C_0 values, one from each chamber test							
Bold : COV value meeting the success criterion (< 30%)							

Accuracy

0 1	Mean C/C ₀ (passive/active)						
Compound	ATD:	ATD:	WMS	Dediate	SVC	Active/	
	Carbopack B	Tenax	WIMS	Kauleno	SKC	Calculated	
111TCA	0.72	0.67	1.15	0.95	0.80	0.79	
124TMB	0.73	0.69	0.54	1.13	0.69	0.89	
12DCA	0.60	0.67	0.86	0.83	0.75	0.87	
BEN	1.71	1.07	0.99	0.90	0.95	0.72	
СТ	0.82	0.67	1.18	0.81	0.55	0.98	
HEX	1.12	0.55	1.15	0.80	0.70	0.86	
MEK	0.21	1.00	1.12	0.62	0.46	1.33	
NAPH	0.90	0.98	0.17	2.26	0.36	0.82	
РСЕ	1.15	0.85	0.72	1.02	0.98	0.94	
ТСЕ	0.91	0.62	0.80	0.91	0.87	0.91	
Maan C/C is the mean of 24 maging/active concentration ratios (and for each chember test)							

Mean C/C_0 is the mean of 24 passive/active concentration ratios (one for each chamber test)

Bold: average C/C₀ values within the 0.63 to 1.58 range, meeting the success criterion (RPD < $\pm/-45\%$)

Active ATD tube data compared to concentrations calculated from standard gas dilution

High Concentration Lab Tests

(To mimic soil gas conditions)

High Concentration Lab Tests

High Concentrations Test Results

Field Testing

Indoor and Outdoor Air

Acknowledgements to Ignacio Rivera and Bart Chadwick of SPAWAR for Support

Sub-slab

Soil Gas

Indoor Air VOCs at Cherry Point

Sub-Slab – Navy San Diego

Sub-slab samples only Fully-passive and with PID purging (flow-through)

Starvation proportional to uptake rate Less starvation for semi-passive samples

Soil Gas @ 12 ft – Hill AFB

6 probes -12 ft deep

Latin Square Design

1 to 12 day exposures

C_o Measured using combination of Summa and Hapsite GC/MS

Negative bias for long duration with ATD-Tenax Negative bias for high uptake rate (Radiello) Otherwise, encouraging results for TCE and DCE

Mathematical Modeling

Transient and Steady-State Modeling

$$\overline{M}(p) = \frac{D_{s}c_{s_{0}}}{p^{2}}q_{s}\frac{\varphi_{2}}{\varphi_{2}\varphi_{4} - \varphi_{1}\varphi_{3}\varphi_{5}}\frac{\varphi_{1}\varphi_{3}}{\varphi_{2}} \left[\frac{K_{1}(q_{s}r_{3})}{I_{1}(q_{s}r_{3})}I_{1}(q_{s}r_{2}) - K_{1}(q_{s}r_{2})\right]$$

$$I_{\alpha}(x) = i^{-\alpha}I_{\alpha}(ix) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m + \alpha + 1)} \left(\frac{x}{2}\right)^{2m+\alpha}$$

$$K_{\alpha}(x) = \frac{\pi}{2} \frac{I_{-\alpha}(x) - I_{\alpha}(x)}{\sin(\alpha\pi)} = \frac{\pi}{2}i^{\alpha+1}H_{\alpha}^{(1)}(ix) = \frac{\pi}{2}(-i)^{\alpha+1}H_{\alpha}^{(2)}(-ix)$$

$$WR\left[\frac{mL}{min}\right] = \frac{2\pi\hbar[cm]D_{eff}[\frac{cm^{2}}{s}](1-\delta)}{\ln[\frac{r^{2}}{s}]\delta} x \ 60[s/min]$$

$$WR\left[\frac{mL}{min}\right] = \frac{2\pi\hbar[cm]D_{eff}[\frac{cm^{2}}{s}](1-\delta)}{\ln[\frac{r^{2}}{s}]\delta} x \ 60[s/min]$$

$$\frac{1}{100} - \Theta_{w} = 0.15$$

$$- \Theta_{w} = 0.25$$

$$- \Theta_{w} = 0.25$$

$$- \Theta_{w} = 0.25$$

$$- \Theta_{w} = 0.35$$

$$- \Theta_{w} = 0.30$$

$$\frac{1}{100} - \Theta_{w} = 0.35$$

$$- \Theta_{w} = 0.30$$

$$\frac{1}{100} - \Theta_{w} = 0.35$$

$$- \Theta_{w} = 0.30$$

$$- \Theta_{w} = 0.35$$

$$- \Theta_{w} = 0.30$$

$$- \Theta_{w}$$

Modified Uptake Rates

Lower uptake rate = less starvation

SKC Ultra II and 12-hole Cap

ATD Tube & Pinhole Cap

WMS and Low-Uptake WMS

Soil Vapor Sampling – NAS JAX

Probes to 3-4 feet deep, exposure durations of 20, 40 and 60 minutes Strong correlations, regression slopes all near 1.0

Passive Sub-Slab – NAS JAX

Limited to 1-inch diameter or less – Low-Uptake Rate Samplers

Starvation and Retention

Overall Correlation between Passive and Active Samplers

Strong correlation to conventional samples over 6+ orders of magnitude

Quantitative results for soil vapor (a breakthrough)

Performance Assessment

- Accuracy
 - Met criterion in most cases, except:
 - (UR x t) > Safe Sample Volume (poor retention)
 - UR > Diffusive Delivery Rate and (UR x t) > Void Volume (starvation)
 - Blank contamination (rare)
 - Some compounds posed challenges for some conditions
 - E.g., MEK on charcoal with high humidity
- Precision
 - Excellent within replicates (often better than TO-15 or TO-17)
 - More sensitive to conditions during sampling
- Ease of use
 - Comparable or better than TO-15 and TO-17
- Cost
 - Savings increase with size of the sampling program

Reports and Articles

ESTCP Report	Navy Report	Soil Vapor - #1	Soil Vapor - #2	Soil Vapor - #3
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<page-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></page-header>	<page-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></page-header>	<page-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></page-header>
Soil Vapor - #4	U.S. Pat Pending	U.S. Pat Pending	Lab Chambers	Eng. Issue Paper
<section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>	Quantitative Passive Soil Vapor Sampling	Method for Deployment of Passive Soil Vapor Samples	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<text><section-header><section-header><section-header></section-header></section-header></section-header></text>

Plus ~30 conference presentations

Take-Home Messages

- Passive Sampling is a valid option for many VOCs
 - Integrate over time to manage temporal variability for indoor air
 - Simpler protocols for soil gas sampling less operator error
 - Easier to ship, handle and deploy lower overall cost
 - Precision and accuracy mostly comparable to active samplers
- Five Potential Biases
 - Retention, starvation, calibration, contamination, recovery
 - All avoidable through careful sampler/sorbent selection, QA/QC
- Benchmarking is recommended for highest confidence
 - 1 of 10 samples collected with a duplicate active sample
 - Accounts for site-specific conditions, challenging compounds

Acknowledgments

- Funding gratefully acknowledged from:
 - ESTCP ER0830
 - U.S. Navy Environmental Sustainability Development to Integration (NESDI) Program
 - In-kind contributions from Geosyntec Consultants, Inc.

Questions/Comments?

tmcalary@geosyntec.com