

Suggested QC Practices for On-Line Analysis

William Lipps Analytical & Measuring Instrument Division July, 2015

Why do we need continuous monitoring?

Laboratory sampling is only a "snapshot" of the sample on a good day

Sampling at the "pipe" does not sample storm water or irrigation water

Sources of pollution may be outside "the pipe"

Rarely do we sample when rivers are flooding

But there are no USEPA approved methods for on-line analysis!

- EPA approves methods
- Methods include:
 - Sampling
 - Preservation
 - Calibration Verification
 - Duplicates
 - Spikes
 - LCS

Can get around sampling and preservation since analysis is immediate

There is no generation of a laboratory report, no batch QC

A significant portion of "normal" is eliminated

But a method includes "batch" QC steps that must be done

- Calibration and Calibration Verification
- Blanks
- Duplicates
- Matrix Spikes
- Analysis of Control Samples

Calibration of on-line analyzers can be automated

- Methods should ensure that analyzers automatically recalibrate
- Use multiple points if necessary
- Or, Operators should periodically recalibrate

Calibration verification should be automated

- Methods should ensure that analyzers automatically verify the calibration in a fixed interval
- Failed CCV should repeat calibration or flag

Analyzer should run "blanks" if target analyte varies

Process control

Ambient water

_	_

The concept of "duplicates" does not apply, however precision should be evaluated

- The on-line method should require a way to collect repeatability data
- Stick the sampling straw in a beaker

The concept of "spikes" does not apply, however recovery should be evaluated

- The on-line method should require a way to determine recovery in the matrix
- Recovery determined on commissioning

The concept of "LCS" does not apply, however precision and recovery should be evaluated

- The on-line method should periodically evaluate an LCS
- LCS defined as comparison to approved method

Example of TN (on-line) compared to TKN (approved)

Example of TKP (approved) compared to TP (online)

On-line monitoring allows you to see "upsets"

18:32

16:32

14:32

3

2

1

0 8:32

19:32

6:32

19:32

6:32

Time (Hrs)

Laboratory

Any new "method" for continuous online monitoring should:

- Obtain equivalent results to approved laboratory methods
- Be "rugged"
- Use few reagents
- Have a sufficient range
- Sample/"handle" a complex matrix
- Calibrate with multiple points
- Require periodic check samples compared to lab

The on-line analyzer must be rugged enough for field/plant use

The on-line analyzer should be capable of sampling multiple streams, or cost effective

Multi-Stream Sample Switching Unit

The on-line analyzer should be capable of handling TSS if necessary

Multiple Stream TSS Unit

Benefits of On-Line Monitoring

On-line analyzer methods are needed if data is to be reported for compliance

- Some QC in existing methods does not apply
- New methods can be written that still provide sufficient QC
- On-line results should be compared to lab results

Thank You!

Wclipps@shimadzu.com

For more information contact

