

Fast GC-TOFMS for High-throughput Screening of Environmental Contaminants

Dr Nicola Watson Sales Support Manager Markes International

A company of the SCHAUENBURG International Group

Outline

• Challenges in monitoring water quality

- GC-TOF MS for water analysis
 - Potential limitations?

- Three potential solutions:
 - Deconvolution
 - Separation capacity of GCxGC
 - Soft electron ionisation

Monitoring water quality

• Focus is generally on "priority" substances, but what about those of emerging concern?

Always need lower detection limits

 New monitoring methods and analytical techniques are now necessary

Issues with current methodology

• 1D GC-MS is not able to resolve all components

Grab sampling is limited

BenchTOF technology

Proprietary design

Benefits of GC-BenchTOF MS

95 pollutants in less than 10 minutes

Problem #1: Is there enough separation capacity?

Potential solution?

Deconvolution

¥ Vi	iew Method [NRW_PS_70eV]	
\odot	Overview	
Methods		Instruments
	Settings	Agilent 7693
	Agilent 7693 Agilent 77890 Bench TOF-dx Mass Representation Dynamic Background Compensation Identification Measurement	Agilent 7890 GC Agilent 7890 GC BenchTOF Acquisition
	Temperatures/Voltages	
	Description Setpoint Transfer line temperature (0450 °C) 300.000 (m)	
	lon source temperature (0.400 °C)	
	More Get Set OK Cancel	MARKES

Real-time analysis

Results available on-the-fly

Confident identification of co-eluting peaks

Deconvolution of four pollutants

Analytical system

GCxGC-TOF MS

Column set:

1st dimension: SGE BPX5, 30 m × 0.25 mm × 0.25µm;

2nd dimension: SGE BPX50, 2 m × 0.1 mm × 0.1 μ m;

Modulator:

Zoex ZX1 loop modulator 1 m as for second dimension Modulation period = 5 s

Screening by passive sampling and GCxGC-TOF MS

- Overcomes the limitations of grab sampling
- Designed to concentrate hydrophobic chemicals (with log Kow > 4)

Passive sampling of river water

Over a 4-week period

Identification of emerging contaminants

Polycyclic musks

 Not restricted to priority pollutants – those of emerging concern are also monitored.

Increased confidence in identification

	Class	NIST library match		
Compound		GCxGC	1D GC (no deconvolution)	1D GC (with deconvolution)
Acenaphthylene	PAH	932	619	722
Fluoranthene	PAH	944	927	936
1,1'-Biphenyl, 2,2',3,4-tetrachloro-	РСВ	870	800	819
2,3,3',5,5',6-Hexachloro-1,1'- biphenyl	PCB	844	776	795
DDT	Pesticide	835	790	801
Atrazine	Pesticide	842	603	620
Chlorpyrifos	Pesticide	824	684	701
Endrin	Pesticide	842	Not found	Not found
Galaxolide	Polycyclic Musk	879	835	835

Problem #2: Weak molecular ions &/or similar spectra

Challenges in soft ionisation

- Source-switching
- Optimise additional parameters
- Sensitivity loss
- Poor isomer speciation

Soft electron ionisation

With no inherent loss in sensitivity

Selectivity enhancement at low eV

Reduced ionisation of common background/carrier gases

- Ionisation potential of common gases in GC–MS
 - CO₂: 13.8 eV
 - N₂: 15.6 eV
 - H₂: 15.4 eV
 - He: 24.6 eV

Hexachlorocyclopentadiene

• Greater than 15x increase in signal-to-noise for m/z 272

- Simplified spectrum at 11 eV
- Greater than 25x increase in signal-to-noise for m/z 246

MARKES

MARKES

Metalaxyl

70 eV 100-50-70 70 .1.11 0-230 240 260 270 100-14 eV 50-Іціцці 260 270 . <mark>89</mark> 0-وجواليلك

MARKES

Summary

- GC-TOF MS enables fast & simple, ultra trace-level detection of targets and unknowns in environmental samples.
- GCxGC-TOF MS gives enhanced separation and confident identification when screening complex matrices.
- Select-eV provides:
 - Simplified spectra for higher peak capacity
 - Improved sensitivity and selectivity
 - Complementary spectra for confident identification capacity

Thank you for listening! Any Questions?

Kevin Collins

Markes International Ltd

South Wales, **UK T:** +44 (0)1443 230935 **F:** +44 (0)1443 231531

Peter Grosshans

Markes International, Inc.

Cincinnati, Ohio, **USA T:** 866-483-5684 (toll-free) **F:** 513-745-0741

E: enquiries@markes.com W: www.markes.com

Leo Pollack

Markes International GmbH

Frankfurt, **Germany T:** +49 (0)6102 8825569 **F:** +49 (0)6102 8825583

