BUSINESS SENSITIVE

July 2015 Battelle Memorial Institute

Internal Research and Development Project

Demonstration of Metaproteomic and Metagenomic Technologies for Advanced Monitoring of Bioremediation Performance

Kate H Kucharzyk, PhD

C. Bartling, D. Stoeckel, L.Mullins, M. Michalsen, P.Hatzinger and H. Rectanus

Environmental Proteomics

- Post-environmental genomics tool
- Designed to provide quantitative (qProteomics) and qualitative (sProteomics) measurements of final gene products (proteins) as biomarkers of metabolic activity
- 16S rRNA work and deep metagenome sequencing are key for success of proteomics

Experimental system	Research goal	Complexity	Feasibility
Isolate in the laboratory	Metabolic pathways Stress responses and adaptation		1
Community in the laboratory	Community function under controlled conditions Model communities to study interactions		
Community in the environment	Community function under complex, ecologically relevant conditions	\mathbf{V}	

Relationship between feasibility of proteomic studies and sample complexity. Different complexity levels can be used to accomplish certain study goals.

Carla M. R. Lacerda, and Kenneth F. Reardon Briefings in Functional Genomics and Proteomics 2009;8:75-87

Rapid and direct measurement of microbial activity in the subsurface, which can support ISB diagnostics and optimization as well as transition to passive treatment or long-term monitoring.

Protein identification

Environmental Metagenomics

- Extensive evaluation of microbial communities with depth previously unattainable
- Identification of microbes involved with:

Ecosystem Health Remediation Corrosion and Fouling

 Integration into existing evaluation technologies

Data Integration

Most common bacterial species

 Crucial geochemical factors

Biological **Factors**

- Proteomic • pH composition • Redox
- Microbial potential community • etc composition

Factors

- presence/ absence
- contamination
- Plume dynamics

Battelle The Business of Innovation

Project Objectives and Goals

Develop Quantitative Proteomic (qProteomic) Approach to Target Degradation Biomarkers of Chlorinated Compounds

- Targeted qProteomics has a potential to complement qPCR in scenarios where qPCR does not aid remedial actions.
- qProteomics is a true measure of active biodegradation of contaminants and may support RPMs in decision making as well as application of Monitored Natural Attenuation and save significant \$\$ to the project.

Experimental Setup

- 1. Environmental subsurface water samples of:
 - Chlorinated Volatile Organic Compounds (CVOCs)
- 2. Sample cleanup and trypsin digestion in solution
- 3. Discovery(LC/MS-MS) C18 column (Eksigent 3C18-CL-120, 3 μm, 120 Å, 0.3 x 150 mm),
 - Shotgun proteomics
 - Shotgun proteomics with peptide specific inclusion list
 - Time gradient (90 and 120 minutes)

- 4. Quantitative Proteomics
- 90 minutes gradient
- Isotopically labelled peptides
- Bioinformatics
- 5. Spectra searched
- using ProteinPilot/
- UniProt database or
- Mascot/ NCBI nr
- database

Environmental Samples

<u>Chlorinated Volatile Organic Compounds (CVOCs) -</u> <u>Environmental Pollutants</u>

- Environmentally hazardous:

 Considered toxic and mutagenic
 Health risk if in groundwater
- Types of contamination:
 - Soil and groundwater
 - DNAPLs in subsurface
 - Managing of DNAPLS, solvents sorbed to solid, volatilized in soil gas and dissolved in water
- Degradation
 - o Microbial reductive dehalogenation

Microbial Dehalogenation of CVOCs

rRNA sequences. *Maphosa et al (2010) Trends Biotech.*

Microbial Dehalogenation of CVOCs

Dhc Rdase genes implicated in reductive dechlorination of chlorinated ethenes. Bioaugmentation for groundwater remediation. (2013) ed. H.Ward .

Naval Air Station, Jacksonville, FL

MW-40S - Upgradient, Outside TTAs **PZ-02 – TTA**

MW-36S - Downgradient, Outside TTAs

PCE (ug/L)	TCE (ug/L)	cDCE (ug/L)	VC (ug/L)	TOC (mg/L)	vcrA (C/L)	рН	ORP (mV)	DO (mg/L)	Methane (ug/L)
PZ-02 (12/11/14) Target Treatment Area									
50	50	3,300	3,300	26	3x10^7	6.48	-150.8	0.19	17,000

Discovery – 16S Sequencing

% of Bacteria

Dehalococcoides	5%
Geobacter	24%
Methylobacter	9%
Desulfuromonadales	27%

High diversity of *Dehalococcoides* (5% of total Bacteria), *Dehalogenimonas* (0.3% of total Bacteria), *Methanogens* (1% of total population) and sulfate reducing bacteria (3% of Bacteria) suggest presence of CVOC degraders.

Discovery – Shotgun Proteomics

Discovery – Shotgun Proteomics, Inclusion List - Assembly

- Aligned all protein sequences of: Pe
 - \circ VcrA
 - o BvcA
 - \circ TceA
- Selected conservative peptide sequences for each of protein
- Total of 25 conservative peptides identified
- Constructed a library of peptide sequences that LC-MS/MS specifically targets for during the sample analyses

ptide ID	Peptide Sequence	m/z
VcrA	YFGAGGVGALNLADPK	775.4
VcrA	VPDHAVPINFK	618.8
VcrA	EADYSYYNDAEWVIPTK	1032.4
VcrA	TGAAIHWK	442.2
BvcA	SLNNFPWYVK	631.9
BvcA	STVAATPVFNSFFR	772.4
BvcA	SLNNFPWYVK	634.3
BvcA	DFENPTIDIDWSILAR	952.9
BvcA	DEALWFASSTGGIGR	783.8
BvcA	TPVPIVWEEVDK	706.3
BvcA	GYYNDQK	444.2
BvcA	VANEISPK	429.2
TceA	YHSTVTR	432.2
TceA	LGLAGAGAGALGAAVLAENNLPHEFK	1231.1
TceA	DVDDLLSAGK	516.7
TceA	ALEGDHANK	477.7
TceA	YSGWNNQGAYFLPEDYLSPTYTGR	1400.1

Library of conservative peptides implicated in reductive dechlorination of chlorinated ethenes.

Discovery – Shotgun Proteomics with Inclusion List

Peptide ID	Peptide Sequence	m/z						
VcrA	YFGAGGVGALNLADPK	775.4		Peptide ID	Score	Match	Peptide Sequence	
VcrA	VPDHAVPINFK	618.8		bvcA	478	163	SLNNFPWYVK	
VcrA	EADYSYYNDAEWVIPTK	1032.4			478	163	STVAATPVFNSFFR	
VcrA	TGAAIHWK	442.2			91	<u>41</u>		
BvcA	SLNNFPWYVK	631.9			40			
BvcA	STVAATPVFNSFFR	772.4		nyaA	19	4	LISIVFK	
BvcA	SLNNFPWYVK	634.3			19	4	QQQTLIEK	
BvcA	DFENPTIDIDWSILAR	952.9			19	4	MDTHAALYEQGK	
BvcA	DEALWFASSTGGIGR	783.8			13	7	MGYGQDVTGK	
BvcA	TPVPIVWEEVDK	706.3			13	7	AHKPFVVADK	
BvcA	GYYNDQK	444.2			13	7	SPOQIEGSASK	
BvcA	VANEISPK	429.2			13	7		
TceA	YHSTVTR	432.2			15	1		
TceA	LGLAGAGAGALGAAVLAENNLPHEFK	1231.1	Results of LC/MS-MS proteomics with pentide					
TceA	DVDDLLSAGK	516.7	inclusion list for sample PZ-02.					
TceA	ALEGDHANK	477.7						

1400.1

Library of conservative peptides implicated in reductive dechlorination of chlorinated ethenes.

YSGWNNQGAYFLPEDYLSPTYTGR

TceA

Discovery – Shotgun Proteomics with Inclusion List

Battelle The Business of Innovation

- Detection of specific peptides with improved experimental matrix
- Direct comparison of isotope-labelled peptide pairs. LC-MS/MS, and quantification of peptides of interest.

x = 51.88 fmol on column (80μ L injection volume, 0.65fmol/ μ L)

Summary

- Shotgun analysis of PZ-02 sample showed diversity of peptides involved in metabolical processes
- Identification of specific peptides to be incorporated into the inclusion list
- Isotopically labelled peptides as an internal standard
- Successful quantification of bvcA peptide concentrations in sample

Acknowledgements

Battelle Memorial Institute

- Craig Bartling, PhD
 - Larry Mullins
- Don Stoeckel, PhD

The Department of Navy

- Mike Singletary

Thank you! Questions: kucharzyk@battelle.org

Battelle The Business of Innovation

800.201.2011 | solutions@battelle.org | www.battelle.org