One Step Extraction-Clean Up for PCBs and Automated Column Chromatography for PCDD/Fs in Sediment and Soil

Philip Bassignani and Ruud Addink Toxic Report LLC Watertown MA

Introduction

Stockholm Convention on Persistent Organics Pollutants 2001.

Compounds of interest: polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs), and furans (PCDFs).

Known toxicity.

Strict environmental regulations in force in most countries.

PCBs

PCBs were intentionally produced 1920-1970s.

Used in capacitators and transformers, also as flame retardants, hydraulic fluids, sealants, and vacuum pump fluids.

Total production estimated worldwide 1.5 million metric tons. Produced as Aroclor in North-America.

Levels are now dropping.

•Still at significant concentrations to pose danger.

PCDD/Fs

PCDD/Fs are always unwanted byproducts.

PCDD/F sources: combustion, incineration, metallurgical industry, pulp and paper bleaching/ production; low natural background (Trace Chemistries of Fire).

Levels also dropping.

Still at significant concentrations to pose danger.

Health Effects

- •Endocrine disruptors.
- •Immune system.
- •Nervous system.
- •Reproductive functions.
- •Carcinogenic.
- •Chloracne.

•Main exposure (> 90%) is through dietary intake: meat, dairy, fish.

•Non-ortho and mono-ortho congeners (WHO-12) most toxic plus 17 laterally substituted PCDD/Fs.

Properties/Analysis

- Low solubility in water and chemically inert.
- Resist environmental degradation.
- Both PCBs and PCDD/Fs accumulate in soil and river sediment.
- Traditional extraction methods: up to 24-36 h Soxhlet and manual clean up.
- Manual methods are time-consuming; can have poor accuracy and reproducibility.

One Step Extraction + Clean Up

PLE® Fast Extraction & Concentration System

Procedure (EPA 8082)

- ▶ 10 g sample mixed with HydromatrixTM to dry, transferred to extraction cells with InCell acid silica end cap.
- Spiked with native and PCBs standards.
- Void volume filled with Ottawa Sand.
- Sample Cells filled with 50% mixture Hexane/Methylene Chloride.
- Cells pressurized to 1500 PSI.
- Heated to 120 °C.
- Temperature held for 20 minutes.
- Extraction cells cooled and flushed with 50% cell volume.
- Additional clean up of sample as extract passes thru acid silica in end cap.
- Extract collected in tubes with direct-to-GC-vial connections.
 - PCB-209 added as internal standard.

6 position evaporator

Toxic Reports

SuperVap Evaporation

- ▶ System pre-heated to 45-60 °C.
- Samples evaporated at stable temperature under 5-6 psi nitrogen.
- ▶ 1 mL extract vial transferred directly to connected GC vial.
- Recovery standards added (nonane/dodecane).

•Extract taken 10 uL volume with a gentle stream of nitrogen at ambient temperature.

Analysis: Polaris Q

Toxic Reports

Results 8082 mix

		Sand	Sediment
	spiked	Mean Rec	Mean Rec
	ug/kg	ug/kg	ug/kg
pcb-1	100	114	75
pcb-5	100	125	81
pcb-18	100	119	93
pcb-31	100	121	85
pcb-44	100	119	85
pcb-52	100	119	91
pcb-66	100	144	89
pcb-87	100	125	85
pcb-101	100	123	90
pcb-110	100	112	85
pcb-138	100	109	87
pcb-141	100	106	93
pcb-151	100	113	91
pcb-153	100	113	91
pcb-170	100	121	86
pcb-180	100	101	95
pcb-183	100	100	95
pcb-187	100	104	88
pcb-206	100	103	79

PCDD/F sediment (1613)

- Analyzed 1 g of NIST-1944 sediment.
- Spiked with ¹³C labeled standards.
- PLE extraction as above (no InCell clean up).
- Volume reduction and solvent exchange to hexane.
- PowerPrep automated clean up.

PowerPrep CleanUp System

Power - Prep™

Clean Up (1)

- Silica High Capacity PCB-free multilayer ABN silica gel column
- Alumina PCB-free basic alumina column
- Carbon PCB-free carbon/celite column

Clean Up (2)

- Condition columns 10 mLs or 40 (silica) mLs each.
- Sample loaded onto silica column in hexane.
- Elute silica and alumina with hexane (140 mLs), then 10% DCM/hexane (70 mLs, collect PCBs if present).
- Elute alumina with 50 mLs DCM to get PCDD/F onto carbon.
- Back elute carbon with 35 mLs toluene, collect PCDD/F.
 Total volume is ~ 375 mLs of solvent.

DFS HRGC/HRMS

NIST 1944 sediment analysis (1)

NIST 1944 sediment analysis (2)

Toxic Reports

Conclusions (1)

- Pressurized Liquid Extraction combined with InCell acid silica clean up gives fast and reliable technique for extraction of PCBs in sediments and soils under the 8082 method.
- Up to six position PLE can extract samples in under one hour.
- When analyzing PCDD/Fs under 1613 method, PLE combined with automated multi column silica, alumina, and carbon clean up delivers clean samples ready for analysis.

Conclusions (2)

- Same technique can be used for PCBs (1668) in sediments and soils.
- Same day sample processing and analysis (HRGC/HRMS or other techniques if desired) is now possible.

