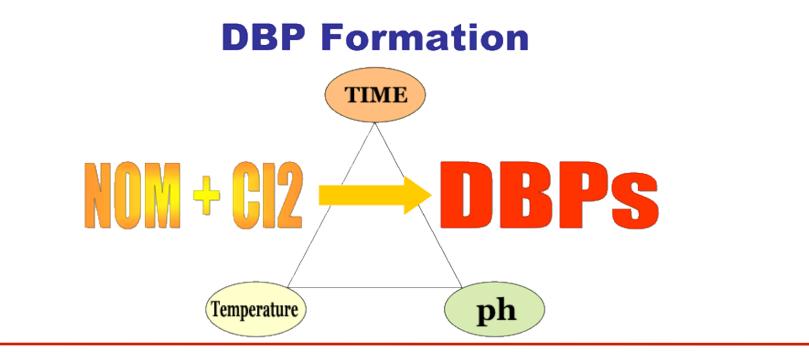


Analysis of Haloacetic Acids by IC-MS/MS in Drinking Water

Tarun Anumol*, Shimin Wu, Shane Snyder PhD University of Arizona Jay Gandhi, PhD Metrohm USA Sheher Mohsin, PhD Agilent Technologies Inc.

* Currently employed at Agilent Technologies Inc.

Disclaimer


*Reference herein to any specific commercial products or nonprofit organization, process, or service by trade name, trademark, manufacturer, or other-wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government and shall not be used for advertising or product endorsement purposes.

Disinfection Byproducts

Definitions

 The reaction of disinfectants used in water treatment with naturally occurring matter (organic and inorganic) which leads to formation of other products (byproducts)

Disinfection Byproducts

>50% on a wt. basis

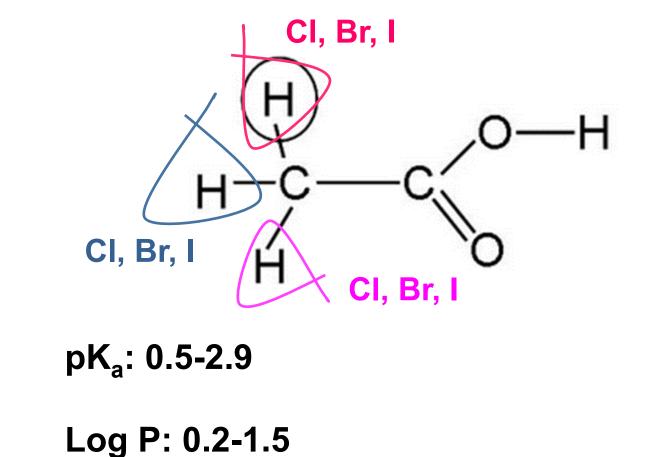
Major Classes in water ¹

Account for 20-60% of DBPs during chlorination

Trihalomethanes (THMs)

Haloacetic acids (HAAs)

- Haloacetonitriles
- Haloketones
- Chloral hydrate


Chloropicrin

¹ USEPA. 1997. 600-R-97-122. Research Plan for Microbial Pathogens and Disinfection By-Products in Drinking Water

Haloacetic acids (HAAs)

Structure

Toxicological Relevance

Toxicity

□ Haloacetic acids

- Skin and eye irritation
- Liver tumors
- Neurological disorders
- Possible human carcinogen

Bromate

- > Nausea, vomiting, abdominal pain
- Thyroid, liver and kidney cancer
- Human carcinogen

Dalapon

Kidney effects

Occurrence

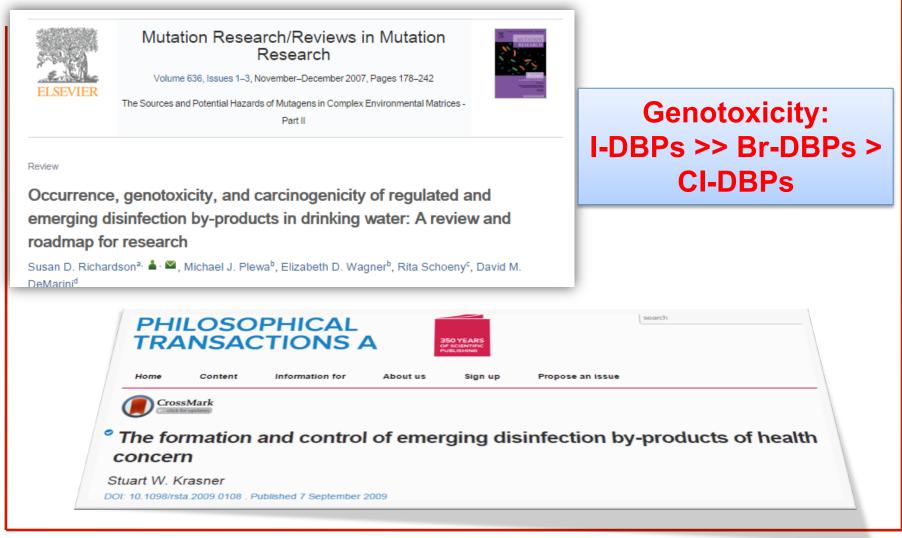
BBC

NEWS

Steelton drinking water tests positive for contaminant

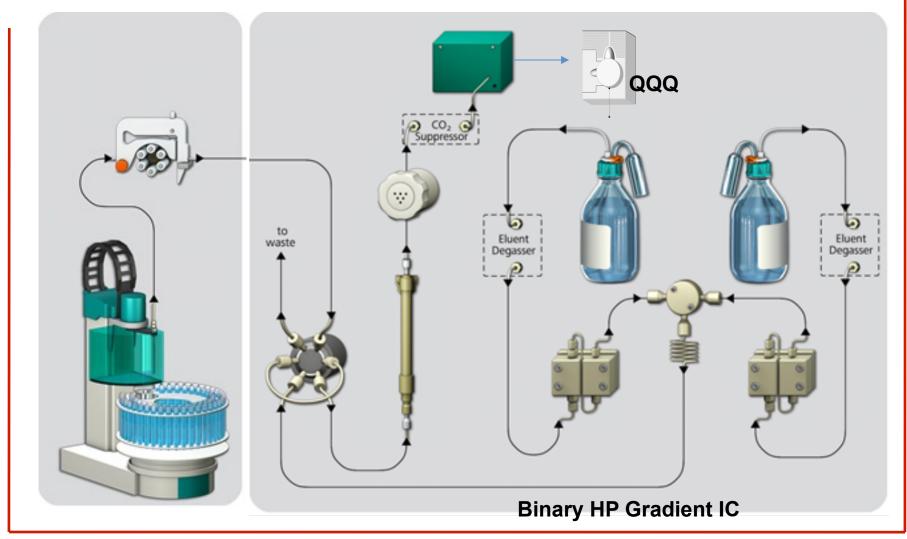
According to the letter, testing completed on November 14 showed that the system exceeded the standard or maximum contaminant level for haloacetic acids and trihalomethanes, a disinfection by-product.

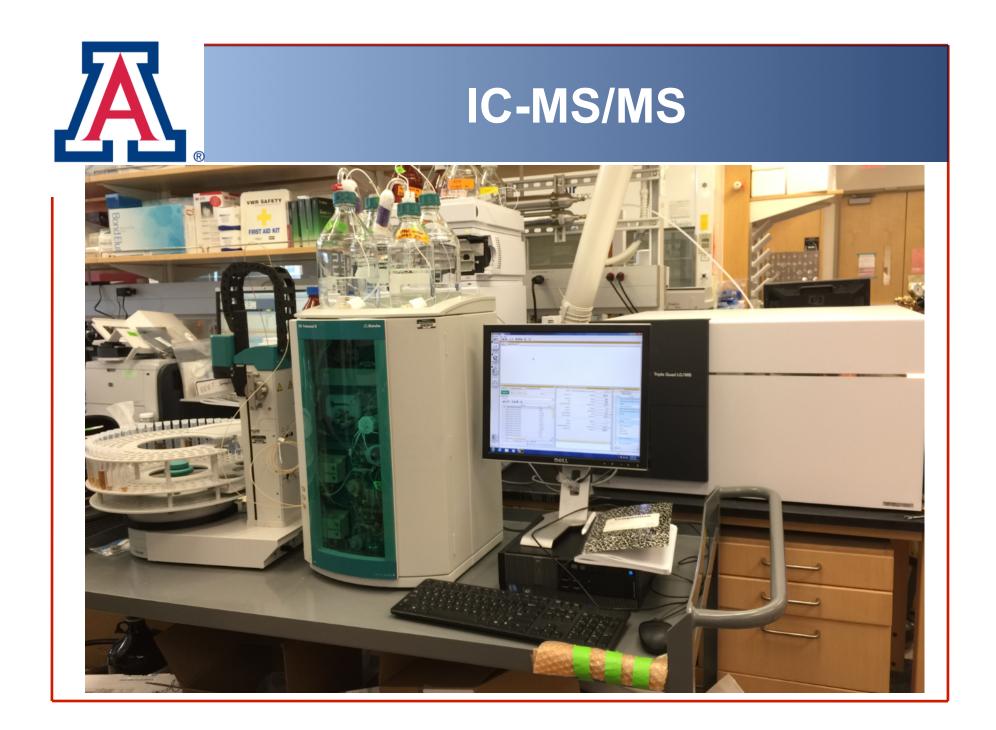
The Telegraph


Elass	
Carcinogen	
	N N
HAA ₉	В
	B
	Di

Haloacetic acids

Class	Compound	Acronym	MCL (ug/L)
Carcinogen	Bromate	BrO ₃ -	(ug/L)
	Monochloroacetic acid	MCAA	10
	Dichloroacetic acid	DCAA	
	Trichloroacetic acid	ТСАА	60
	Monobromoacetic acid	MBAA	60
	Dibromoacetic acid	DBAA	
HAA ₉	Bromochloroacetic acid	BCAA	
	Bromodichloracetic acid	BDCAA	
	Dibromochloroacetic acid	DBCAA	-
	Tribromoacetic acid	ТВАА	
	Monoiodoacetic acid	MIAA	
Emerging	Chloroiodoacetic acid	CIAA	_
HAAs	Bromoiodoacetic acid	BIAA	
	Diiodoacetic acid	DIAA	
Herbicide degradate	Dalopon	Dal	




lodinated-HAAs

IC/MSMS Configuration

IC-MS/MS Interface

Metrohm to Agilent interface C Agilent MassHunter Platform

IC Conditions

Method

- Column: Metrosep A Supp 7 (250/4.0)
- Column Temperature: 45°C
- Solvent A: [85/15: HPLC Water/ACN] + 50 mM KOH + 7 mM Na₂CO_{3;}
- Solvent B: HPLC Water

Time (min)	Gradient (%A)
0.0	20
2.0	20
12	95
16	95
17	20
18.5	20

Mass Spectrometer

6490 Agilent MS/MS

 All parameters optimized using Agilent SourceOptimizer Software

						roject par	ameters							
Acquisition	Source	Chromatogram	Instrument	Diagnostics		Op	timize me	thod D:\Ma	esHunter/Metho	ods\SFC-MS	pestizide-1 m			Browse
				- 1		Pro	oject Fold	er D:\Ma	ssHunter\Data\	SourceOpt				Вющие
-Source para	ameters ——					Per	oject Nar	ne Opt_1				opend timesta	100	
					_	- CA	ujeu. nai	OPICI OPICI				pper la uniesa	sint.	
	Gas Te	mp: 120	°C	120	°C	Instrument	paramete	15						
				-					1 -					
							7	Types	PreWait(min)	Replicate	StepWait (min)	Internet Automation	Surviva and Annual Survival	Residence in concession, or
	Gas Fl	ow: 13	1/min	13.0	1/mi	,		Nozde Voltage Capillary	0	1	0	2000	2000 5000	200 250
			:			_	(V)	Gas Temp	30	1	20	160	340	20
	Nebuli	zer: 45	psi	45.0	psi		1	Gas Flow	30	1	0	4	13	1
She	eath Gas Te	mp: 390	°C	390	°C		V	Sheath Gas Temp	30	1	20	200	400	20
				· · · · · · · · · · · · · · · · · · ·			1	Sheath Gas Row	30	1	0	8	12	1
Sh	neath Gas Fl	ow: 12	1/min	12.0	1/mi			Nebulizer	0	1	0	20	60	5
	Capill Nozzle Volta	Positive ary: 3500	Negative V 3000	V 3337.402	nA	Worklet pa Sample		Pest Std_100ppb		Workist (position of data file	Sample F		Vial 61 1
	NUZZIE VUILA	.ge. [1500	V 1500	v										
C	hamber Curr	rent		0.36	μΑ	00	ate <u>M</u> etho	ods		<u>S</u> ubmit			Q:	ac
					_	0.0	ana Menye	spo		279-1			0	

Compound Optimization

Transitions

Compound	Abv.	Precursor Ion	Product Ion	Collision Energy
Bromate	BrO ₃ -	126.9	110.8	24
Bromate	BrO ₃ -	126.9	95	36
Bromochloroacetic acid	BCAA	173	128.9	8
Bromochloroacetic acid	BCAA	173	80.9	24
Bromodichloroacetic acid	BDCAA	163	81	8
Bromolodoacetic acid	BIAA	262.8	218.7	8
Chlorodibromoacetic acid	CDBAA	206.9	81	8
Chlorodibromoacetic acid	CDBAA	206.9	78.9	8
Chloroiodoacetic acid	CIAA	218.9	126.9	20
Dalapon	DAL	141	97	6

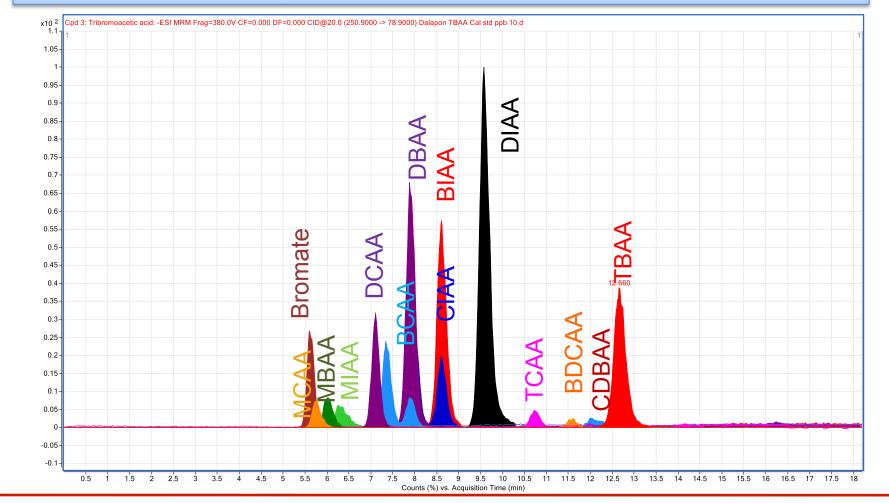
Compound Optimization

Transitions

Compound	Abv.	Precursor Ion	Product Ion	Collision Energy
Dibromoacetic acid	DBAA	216.8	173	8
Dichloroacetic acid	DCAA	127	83	6
Diiodoacetic acid	DIAA	310.8	266.6	4
Monobromoacetic acid	MBAA	137	79	6
Monochloroacetic acid	MCAA	93	35	6
Monoiodoacetic acid	MIAA	184.9	126.7	20
Tribromoacetic acid	TBAA	250.9	78.9	20
Trichloroacetic acid	TCAA	163	119	8
Trichloroacetic acid	TCAA	117	34.9	8

Compound Optimization

Internal Standards


Compound	Abv.	Precursor Ion	Product Ion	Collision Energy	Retention Time (min)	
Trichloroacetic acid ¹³ C ₂	TCAA ¹³ C ₂	118	34.9	8	10.6	TBAA TCAA BIAA BDCAA CDBAA
Dichloroacetic acid ¹³ C ₂	DCAA ¹³ C ₂	128	84	6	7.1	DCAA DBAA DIAA
Monobromoacetic acid ¹³ C ₁	MBAA ¹³ C1	138	79	6	5.9	MBAA MIAA Bromate
Monochloroacetic acid ¹³ C ₂	MCAA ¹³ C ₂	94	35	6	5.6	MCAA

Spiked at 10 µg/L in all samples

Chromatography

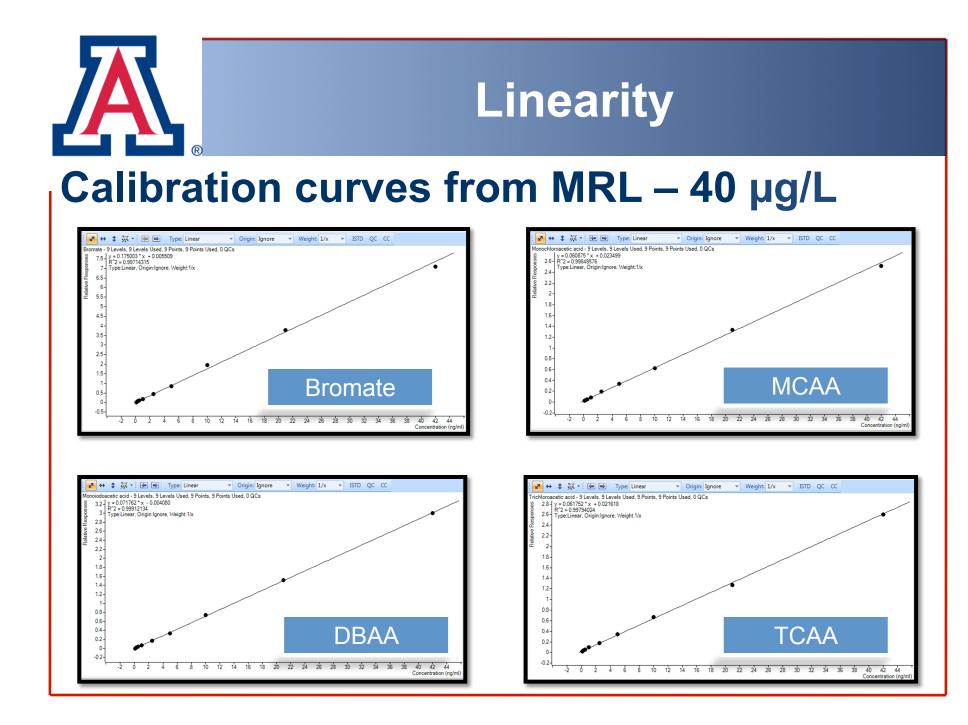
10 µg/L standard in Mili-Q water

Limits of Detection/Quantification

Compound	LOD (S/N>3)	LOQ (S/N>10)
BrO ₃ -	0.1*	0.1
BCAA	0.1*	0.25
BDCAA	0.25	0.5
BIAA	0.1*	0.1
CDBAA	0.1	0.25
CIAA	0.1*	0.1
DAL	N.A	N.A
DBAA	0.1	0.25
DCAA	0.1*	0.1
DIAA	0.1*	0.1
MBAA	0.1*	0.1
MCAA	0.1*	0.1
MIAA	0.1	0.1
TBAA	5	10
TCAA	0.1*	0.1

* S/N >10 at lowest standard (0.1 μg/L)

S/N at 0.1 µg/L


Compound	LOD (S/N>3)	
BrO ₃ -	225	
BCAA	3.3	
BDCAA	-	
BIAA	13	
CDBAA	4.9	
CIAA	17	
DAL	N.A	
DBAA	3.7	
DCAA	193	If 2
DIAA	10	transitions
MBAA	325	present,
MCAA	17	most
MIAA	85	abundant
TBAA	-	selected
TCAA	205	

Method Reporting Limit (MRL)

Based on Glaser et al. (n=7)

Compound	MRL (ug/L)	Fortification level (ug/L)	Compound	MRL (ug/L)	Fortification level (ug/L)
BrO ₃ -	0.08	0.25	DCAA	0.10	0.25
BCAA	0.10	0.25	DIAA	0.09	0.25
BDCAA	0.24	0.5	MBAA	0.11	0.25
BIAA	0.09	0.25	MCAA	0.09	0.25
CDBAA	0.16	0.25	MIAA	0.10	0.25
CIAA	0.04	0.25	TBAA	3.5	10
DAL	0.08	0.25	TCAA	0.36	0.5
DBAA	0.09	0.25			

Linearity

Compound	R ²	
BrO ₃ -	0.9971	
BCAA	0.9989	
BDCAA	0.9986	
BIAA	0.9980	
CDBAA	0.9978	
CIAA	0.9987	
DAL	0.9976	R fc
DBAA	0.9981	C
DCAA	0.9977	
DIAA	0.9979	
MBAA	0.9972	
MCAA	0.9984	
MIAA	0.9991	
TBAA	0.9957	
TCAA	0.9979	

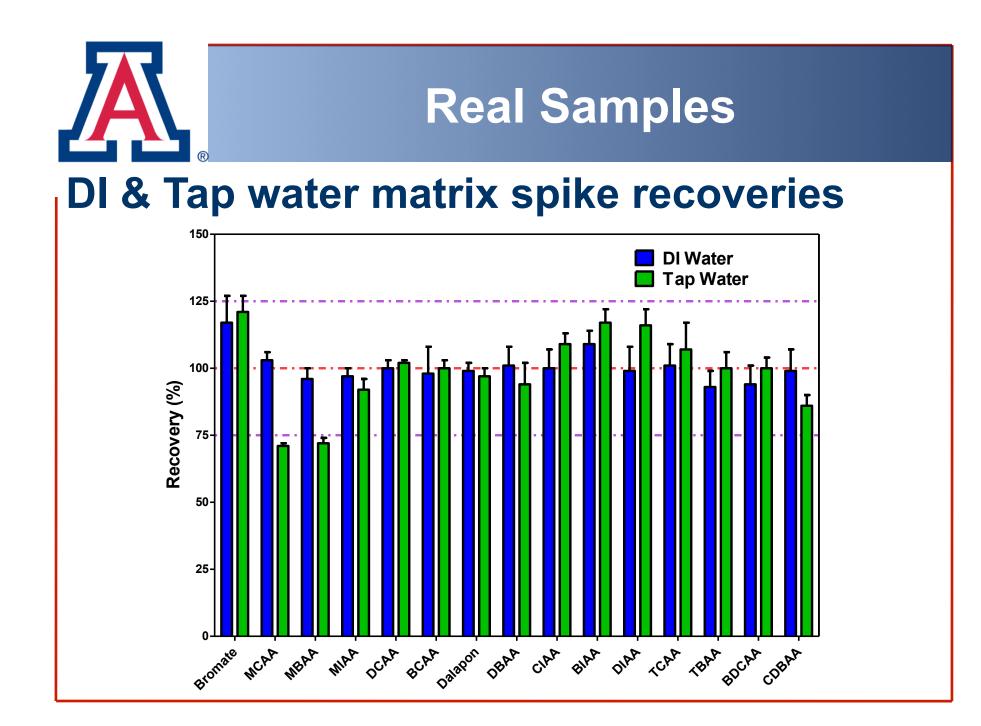
Excellent inearity. R² >0.995 for all compounds

Reproducibility

Intra-day:3 samples spiked at 10 ppb tested every 4 hours

Inter-day:3 samples prepared daily & spiked at 10 ppb tested every day

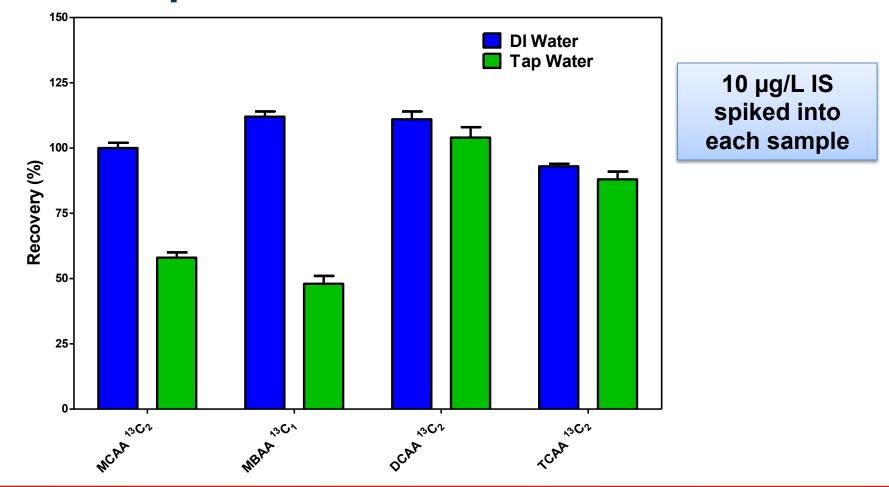
Compound	Intra-day (RSD)	Inter-day (RSD)	Compound	Intra-day (RSD)	Inter Day (RSD)
BrO ₃ -	2.1	5.1	DCAA	2.7	3.2
BCAA	3.2	4.7	DIAA	3.4	6.9
BDCAA	3.1	5.6	MBAA	1.2	4.7
BIAA	1.1	5.7	MCAA	0.9	3.4
CDBAA	1.6	5.7	MIAA	1.6	5.8
CIAA	0.9	4.4	TBAA	2.7	7.3
DAL	3.7	6.3	TCAA	4.4	6.1
DBAA	2.2	6.1			



Real Samples

Tap water matrix spike recoveries

Compound	DI water (%)	Tap water (%)	Compound	DI water (%)	Tap water (%)
BrO ₈ -	117±10	121±6	DCAA	100±3	102±1
BCAA	98±10	100±3	DIAA	99±9	116±6
BDCAA	94±7	100±4	MBAA	96±4	72 <u>±1</u>
BIAA	109±5	117±5	MCAA	103±3	71±1
CDBAA	99±8	121±6	MIAA	97±3	92±4
CIAA	100±7	109±4	TBAA	93±6	100±6
DAL	99±3	97±3	TCAA	101±8	107±10
DBAA	101±7	94±8			


4 replicate samples spiked at 10 µg/L

Internal Standards

Matrix spike recoveries

Conclusions

- IC-MS/MS is a robust analytical technique for analysis of HAAs, bromate and Dalapon in drinking and surface waters.
- □ Statistical MRLs of 0.8-3.5 µg/L achieved with 12/15 compounds having sub 0.2 µg/L.
- Minimal sample preparation and rapid analysis time (<20 min) were achieved.</p>
- Very good linearity and matrix spike recoveries for all 15 compounds were observed.
- In our work, we have NOT observed any degradation of MCIAA as illustrated in USEPA method

Acknowledgements

- JoAnne Barcelleano U of Ariz.
- Scott Jauch U of Ariz.
- Metrhom AG and USA Applications Team
- Johnson Mathew USEPA Region 6
- Marvelyn Humphrey USEPA Region 6
- Dr. Melvin Ritter USEPA Region 6

Agilent Technologies

Thank You

