

The Use of 2-D IC for the Determination of Haloacetic Acids in Drinking Water – Redux

Richard F. Jack, Ph.D. Rong Lin, Ph. D. Kannan Srinivasan, Ph.D.

The world leader in serving science

Overview

- Haloacetic Acids Analysis (HAA)
 - Background
 - Current Methods
- 2-D IC
 - Matrix removal
 - New columns
 - System configuration
- Analysis of HAA9 with 2-D IC
- Conclusions

What Are HAAs?

Acid	Abbreviation	Chemical Formula	рКа	Boiling Point °C
Monochloroacetic Acid	MCAA*	CICH ₂ CO ₂ H	2.86	187.8
Dichloroacetic Acid	DCAA *	Cl ₂ CHCO ₂ H	1.25	194
Trichloroacetic Acid	TCAA *	Cl ₃ CCO ₂ H	0.63	197.5
Monobromoacetic Acid	MBAA *	BrCH ₂ CO ₂ H	2.87	208
Dibromoacetic Acid	DBAA *	Br ₂ CHCO ₂ H	1.47	195
Tribromoacetic Acid	TBAA	Br ₃ CCO ₂ H	0.66	245
Bromochloroacetic Acid	BCAA	BrCICHCO ₂ H	1.39	193.5
Dibromochloroacetic Acid	DBCAA	Br ₂ CICCO ₂ H	1.09	NA
Dichlorobromoacetic Acid	DCBAA	Cl ₂ BrCCO ₂ H	1.09	NA

* MCAA, DCAA, TCAA, MBAA, DBAA are collectively referred to as HAA5

Formation of HAA's in Drinking Water

- Disinfection treatment is essential to eliminate waterborne disease-causing microorganisms
- Ozonation bromate
- Chlorination (chlorine or chloramine)
 - Chlorite, chlorate
 - Trihalomethanes (THM) and haloacetic acids (HAAs)

- Chlorite: nervous system, affects fetal development, anemia
- Bromate: carcinogenic
- Chlorate: produce gastritis, blood diseases, and acute renal failure.
- THM & HAAs: chronic exposure could increase risk of cancer
- Regulated under Safe Drinking Water Act
- EPA promulgated to the states

Haloacetic acids are formed when chlorine or other disinfectants react with naturally occurring organic and inorganic matter in water

Disinfectant Byproducts (DBPs) Regulation

- Total Trihalomethanes (TTHMs) in 1970s
- 1998 U.S. EPA Stage 1 Disinfectants/Disinfection Byproducts (D/DBP) Rule:
 - Seven new regulations, including HAA5 and bromate
 - Monitoring of HAA5 at all plants that disinfect with chlorine
 - Report total MCAA, MBAA, DCAA, DBAA, and TCAA
 - Maximum Contamination Level (MCL) = 0.060 mg/L annual average
 - MCL Goal (MCLG): DCAA should not be present; TCAA < 0.030 mg/L
- 2006 U.S. EPA Stage 2 D/DBP Rule: Reduced MCLG
 - Total HAA5 MCL < 0.060 mg/L
 - MCAA < 0.07 mg/L; TCAA < 0.02 mg/L
 - DCAA should not be present

Summary of EPA Methods for HAAs

Technique	EPA Method	Dionex IonPac Columns	MDL (ppb)
 1) Liquid/Liquid Extraction 2) Derivitization 3) GC-ECD 	552.2 552.3	GC-ECD	Mono: 0.13–0.20 Di: 0.02–0.08 Tri: 0.03-0.10
IC-MS, IC-MS/MS	557	Dionex IonPac AG24 precolumn + Dionex IonPac AS24 separation column (2 mm i.d.)	Mono: 0.06–0.20 Di: 0.02–0.11 Tri: 0.04–0.09
2D-IC Suppressed	Pending	First dimension: Dionex IonPac AG24A precolumn + Dionex IonPac AS24A separation column (4 mm i.d.)	Mono: 0.17–0.45 Di: 0.06–0.13
Cond. (direct)	314.2	Second dimension: Dionex IonPac AG26 precolumn + Dionex IonPac AS26 separation column(0.4 mm i.d.)	Tri: 0.08–0.27

U.S. EPA Method 552.3

- Sample Handling
 - Add 100 mg/L of granular ammonium chloride to convert residual free chlorine to combined chlorine
- Workflow
 - Acidify 40 mL of sample to pH = 0.5
 - Liquid/Liquid extraction: methyl *tert*-butyl ether (MTBE) or *tert*-amyl methyl ether (TAME)
 - Derivitization: Add acidic methanol and heat for 2 h to convert HAAs to methyl esters
 - Separate sample: Add a concentrated sodium sulfate and discard aqueous layer
 - Neutralize: Add saturated sodium bicarbonate solution
 - Analysis: GC/ECD with a run time 25–30 min
 - Total time ~ 3-4 h

U.S. EPA Method 552.3 Reported Detection Limits

Advantages

- Good selectivity
- Low MDLs
- Wide applicable concentration range
- 0.5–30 µg/L

Limitations

- Requires sample pretreatment
- Time consuming
- Labor intensive
- Subject to multiple procedural errors

Analyte	Detection Limits (µg/L)	% Recovery
MCAA	0.20	81
MBAA	0.13	91
DCAA	0.084	98
BCAA	0.029	103
DBAA	0.021	105
TCAA	0.024	107
BDCAA	0.031	113
CDBAA	0.035	112
TBAA	0.097	109

EPA 557: Determination of Bromate, Dalapon, and HAA9 by Direct Injection Using IC-MS/MS

IC-MS/MS

- Suppressed ion chromatography with MS or MS-MS detection
- No need for liquid-liquid extraction or sample pretreatment
- Direct injection
- MRL ppb level
- Matrix diversion setup
- No need for derivatizatio
- Fully automated
- Recovery >90%

2-D IC for Haloacetic Acids

- Why another method for HAA's?
 - Avoid sample prep
 - Lower cost alternative
- EPA 2-D IC methods
 - EPA 302.0: DETERMINATION OF BROMATE IN DRINKING WATER USING TWO-DIMENSIONAL ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY DETECTION
 - EPA 314.2: DETERMINATION OF PERCHLORATE IN DRINKING WATER USING TWO-DIMENSIONAL ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY DETECTION
- Challenge: HAA
 - Matrix
 - Multiple time cuts
 - New columns to improve selectivity

Possible Anions in Drinking Water

Common Anions

- Fluoride, chloride, nitrite, bromide, nitrate, sulfate, and phosphate
- High ionic water (HIW, Specified in EPA Methods)

Chloride	350 mg	/L
Bicarbonate	150 mg	/L
Sulfate	250 mg	/L
Nitrogen (Nitrate)	20 mg	/L

- Oxyhalide
 - Chlorite, bromate, chlorate
- Organic Acids
 - Acetate, formate, benzoate, etc.

Matrix Elimination with 2-D Ion Chromatography

- Allows Large-Loop Injection in the First Dimension (4 mm column)
 - Possible to inject a larger loop volume than the standard approach because the capacity and selectivity of the analytical column in the first dimension dictates the recovery, and the analyte of interest is analyzed in the second dimension
- Focuses lons of Interest in a Concentrator Column After Suppression in the First Dimension
 - Hydroxide eluent converted to DI water, providing an ideal environment for focusing or concentrating the ions of interest
- Provides Analysis in the Second Dimension Using a Smaller Column Format with a Smaller Cross-Sectional Area, Yielding Enhanced Sensitivity
 - For example, the cross-sectional area of a 1 mm column is one sixteenth the area of a 4 mm column, providing a sensitivity enhancement factor of ~16
- Provides Analysis in the Second Dimension Using a Different Chemistry
 - Enhanced selectivity

2D-IC Analysis of HAAs in a Fortified Matrix

2D-IC Analysis of HAAs in Simulated Samples Using the Dionex IonPac AS24A and AS26 Columns

First Dimension Conditions

Column:	Dionex IonPac AS24A/AG24A (4 × 250 mm)
Eluent:	KOH: 7 mM from 0 to 12 min, 7 to 18 mM from 12 to 42 min, step to 65 mM at 42 min
Eluent Source:	Dionex EGC III KOH cartridge
Flow Rate:	1.0 mL/min
Inj. Volume:	500 μL
Temperature:	15 °C
Detection:	Suppressed Conductivity, Dionex ASRS 300, AutoSuppression, external water mode

Second Dimension Conditions:

Column:	Dionex Ion	Pac AS26/A	G26 Capillary (0.4	× 250 mm)
Eluent:	KOH: 6 mN	I from 0 to 5	0 min, step to 160	mM at 50 min,
	160 mM fro	m 50 to 57	min, step to 130 mM	VI at 57 min
Eluent Source:	Dionex EG	C III KOH ca	apillary cartridge	
Flow Rate:	0.012 mL/m	nin		
Concentrator:	Dionex Ion	Swift MAC-2	200	
Temperature:	14 °C			
Detection:	Suppressed	d Conductivi	ity, Dionex ACES 30	00,
	AutoSuppre	ession, exter	rnal water mode	
Peaks:		µg/L		µg/L
	1. MCAA	5	6. TCAA	5
	2. MBAA	5	7. BDCAA	5
	3. DCAA	5	8. CDBAA	5
	4. BCAA	5	9. TBAA	5
	5. DBAA	5		
Pink Trace:	100 ppm ar	nmonium cł	nloride	
Blue Trace:	High Ionic \	Vater (250 p	opm Chloride, 250 p	opm Sulfate,
	150 ppm Bi	carbonate,	20 ppm nitrate and	
	100 ppm ar	nmonium ch	nloride)	

Sensitivity Improvement increased with Capillary IC

Second Dimension separation of Haloacetic Acids on 2mm vs. 0.4 mm IonPac[®] AS 26

Sensitivity Improvement

- RFIC[™] system uses hydroxide eluents which are suppressed to water, resulting in lower backgrounds and higher sensitivity
- Using an RFIC system in 2-D IC method
 - From 4 to 2 mm enhances sensitivity 4x
 - From 4 to 0.4 mm format enhances sensitivity 100x

Dimension	Sensitivity	Flow rate (mL/min)
First (4 mm)	1	1
Second (2 mm)	4	0.25
Second (0.4 mm)	100	0.01

Thermo Scientific Dionex ICS-5000⁺ HPIC System

The Dionex ICS-5000⁺ is a universal HPIC system **High-Pressure Ion Chromatography**

- Continuous operation up to 5000 psi
- High pressure capable with both standard bore and capillary systems
- Increased productivity with fast run times
- Improved separations and higher resolution with 4 µm particle columns
- Enhanced temperature control for HAAs

Thermo Scientific[™] Dionex[™] IC Cube[™]

HPIC - High Resolution, Fast Analyses

Simplifying on a single IC: First Dimension – System 1

Simplifying on a single IC: First Dimension – System 1

First Dimension with Dionex IonPac AS24A Column

Columns: Flow Rate: Eluent:	Dionex IonPac AG 1.0 mL/min KOH: 7 mM KOH 7 to 18 mM (12–3) Step to 65 mM at	624A,/AS24A, 4 mm (0–12 min), 2 min), 32 1 min
Eluent Source Detection:	: Dionex EGC-500 Suppressed conduction Dionex ASBS 300	KOH cartridge uctivity,
Inj. Volume: Temp.:	161 mA 500 μL 15 °C	заррі 63301, 4 mm,
Sample:	20 ppb HAA9 in	om NH CI
Peaks:	A. 1100 PI	
	1. MCAA	6. TCAA
	2. MBAA	7. BDCAA
	3. DCAA	8. CDBAA
	4. BCAA	9. TBAA
	5. DBAA	

* HIW = 250 ppm Cl, 250 ppm, SO₄,150 ppm HCO₃, 10 ppm NO₃, 100 ppm NH₄Cl

Second Dimension with Dionex IonPac AS26 Column

Columns: Flow Rate: Eluent:	Dionex IonPac AC 0.012 mL/min KOH: 6 mM (0–50 Step to 160 mM a Step to 130 mM a	626,/AS26, 0.4 mm) min) t 50 min t 57 min
Eluent Source Detection:	E: Dionex EGC KOH Suppressed cond Thermo Scientific Anion Capillary El	I capillary cartridge uctivity, ™ Dionex™ ACES™ ectrolytic
Concentrator:	Suppressor, 25 mA Thermo Scientific IonSwift™ MAC-2	[™] Dionex [™] 00 column
Temp.:	14 °C	
Sample:	20 ppb HAA9 in A. HIW* B. 100 pj	om NH₄CI
Peaks:		
	1. MCAA	6. TCAA
	2. MBAA	7. BDCAA
	3. DCAA	8. CDBAA
	4. BCAA	9. TBAA
	5. DBAA	
* HIW 10 pp	′ = 250 ppm Cl, 250 pp m NO ₃ , 100 ppm NH ₄ C	m, SO ₄ ,150 ppm HCO ₃ Cl

Thermo Fisher SCIENTIFIC

2D-IC LCMRL Results Compared to Method 557

	HAA	Calculated LCMRL (µg/L)	Method 557 (µg/L)
MCAA*	Monochloroacetic acid	0.17	0.58
DCAA*	Dichloroacetic acid	0.15	0.13
TCAA*	Trichloroacetic acid	0.32	0.25
MBAA*	Monobromoacetic acid	0.45	0.19
DBAA*	Dibromoacetic acid	0.32	0.062
TBAA**	Tribromoacetic acid	0.39	0.27
BCAA**	Bromochloroacetic acid	0.21	0.16
CDBAA**	Chlorodibromoacetic acid	0.17	0.080
BDCAA**	Bromodichloroacetic acid	0.47	0.19

+ Lowest concentration method reportable level

*HAA5; **HAA9

Determinations of HAA9 in Ground Water

Determinations of HAA9 in Surface Water

HAA5	Spiked Levels (µg/L)	Surface Water	Drinking Water
Monochloroacetic acid	10	85.4%	107%
Dichloroacetic acid	10	104%	75.6%
Trichloroacetic acid	10	101%	82.0%
Monobromoacetic acid	10	102%	123%
Dibromoacetic acid	10	115%	120%

Comparing the 2D-IC Results to EPA Method 552.3

Surface Water	Method 552.3	2D-IC HAA
MCAA*	3.13 µg/L	3.21 μg/L
DCAA*	32.5	31.2
TCAA*	26.6	21.4
MBAA*	Not Reported	0.90
DBAA*	0.88	1.76
BCAA**	5.89	5.74
Ground Water	Mathad 552.2	
	Method 552.5	
MCAA*	0.33	0.28
MCAA* DCAA*	0.33 1.20	0.28 1.43
MCAA* DCAA* TCAA*	0.33 1.20 0.30	0.28 1.43 0.33
MCAA* DCAA* TCAA* MBAA*	0.33 1.20 0.30 Not Reported	0.28 1.43 0.33 0.53
MCAA* DCAA* TCAA* MBAA* DBAA*	0.33 1.20 0.30 Not Reported 1.75	0.28 1.43 0.33 0.53 1.05

*HAA5; **HAA9

Method aspects

- Sample Preservation
 - Ammonium Chloride (100 ppb) added to prevent HAA formation.
 - All standards are prepared in Ammonium Chloride.
- Laboratory Synthetic Sample Matrix
 - Contains NH₄Cl preservative

Compound	Conc. LSSM (mg/ L)
Nitrate anion	20
Bicarbonate anion	150
Chloride anion	250
Sulfate anion	250

- Analysis batch cannot exceed 24 hrs.
- Wash cycle for concentrator after each injection
- Concentrator column concentrates approx.15 mL of sample from the 1st Dimension.
- Determination of the cut window
- Calibration acceptance criteria

Conclusion

- The 2D-IC method for HAAs is a viable alternative to EPA methods 552.3 and 557
- HAAs are directly determined without multiple and lengthy derivitization steps as in EPA 552.3
- This method is selective and sensitive and designed to reduce matrix interference effects
- Regulatory acceptance is pending
- Similar to other 2D-IC methods that have regulatory acceptance
- Simplified and less costly using a single system; the Dionex ICS-5000⁺ HPIC system with its dual system capabilities and enhanced temperature controls

Thank you!

