
National Environmental Monitoring Conference 2015
Chicago, Illinois

M.J. Wade1, J. A. Johnson2, U.B. Furrer3

1 Wade Research, Inc., Marshfield, MA
2 NewFields Companies, LLC. Houston, TX
3 Harriton & Furrer, LLP, Armonk, NY
Hydrocarbon degradation statistics

Once released to the environment, petroleum hydrocarbons are not stable. That is, they undergo chemical changes consistent with their surroundings and their chemical structure. The changes that take place can be described in a variety of ways.

The overall effects of individual reactions that change individual hydrocarbons have come to be known collectively as “petroleum weathering.”
Hydrocarbon degradation statistics

Here is the problem:
Hydrocarbon degradation statistics

A leak from an underground gasoline storage tank releases a single product which first saturates the adjacent soils and then migrates into groundwater. Following the groundwater gradient . . .
Hydrocarbon degradation statistics

We can collect samples of original fuels, and impacted soils and/or groundwater, ship them to a high level forensic analytical laboratory and collect a large amount of data.

For gasoline releases, we can follow the five principal hydrocarbon classes of gasoline: paraffins, isoparaffins, aromatics, naphthenics and olefins or the PIANO (or PONA) analyses. Unfortunately, not enough target analyte uniformity yet among labs.
Hydrocarbon degradation statistics

With such data, we can examine each of the five major categories of gasoline HCs and begin to ask questions.
Hydrocarbon degradation statistics

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Alkane Range</th>
<th>BP Range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasolines (GRO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automotive</td>
<td>C4 - C12</td>
<td>50-200</td>
</tr>
<tr>
<td>Aviation</td>
<td>C4 - C12</td>
<td>25-170</td>
</tr>
<tr>
<td>Distillate Fuel Oils (DRO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Oil No. 1</td>
<td>C9 - C16</td>
<td>150-300</td>
</tr>
<tr>
<td>Fuel Oil No. 2</td>
<td>C11 - C20</td>
<td>160-360</td>
</tr>
<tr>
<td>Residual Fuel Oils (RRO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Oil No. 4, 5, 6</td>
<td>> C20</td>
<td>350-650</td>
</tr>
<tr>
<td>Component</td>
<td>Formula</td>
<td>BP (°C)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Pentane</td>
<td>n-C5H${12}$</td>
<td>36</td>
</tr>
<tr>
<td>Benzene</td>
<td>C$_6$H$_6$</td>
<td>80</td>
</tr>
<tr>
<td>Toluene</td>
<td>C$_6$H$_5$CH$_3$</td>
<td>110</td>
</tr>
<tr>
<td>Isooctane</td>
<td>C8H${18}$</td>
<td>116</td>
</tr>
<tr>
<td>Octane</td>
<td>n-C8H${18}$</td>
<td>126</td>
</tr>
<tr>
<td>o-, m-, p-Xylene</td>
<td>(CH$_3$)$_2$C$_6$H$_4$</td>
<td>144</td>
</tr>
<tr>
<td>Nonane</td>
<td>n-C9H${20}$</td>
<td>150</td>
</tr>
<tr>
<td>Decane</td>
<td>n-C${10}$H${22}$</td>
<td>174</td>
</tr>
<tr>
<td>Undecane</td>
<td>n-C${11}$H${24}$</td>
<td>196</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>(CH$_3$)$_3$C$_6$H$_3$</td>
<td>176</td>
</tr>
<tr>
<td>Pentadecane</td>
<td>n-C${15}$H${32}$</td>
<td>271</td>
</tr>
</tbody>
</table>
Hydrocarbon degradation statistics

With such data, we can examine each of the five major categories of gasoline HCs and begin to ask questions.
Hydrocarbon degradation statistics

Case 1: UST sludge – leaded gasoline

![Graph showing concentrations of normal alkanes C5 through C15](image-url)
Hydrocarbon degradation statistics

Case 1: soils, down gradient from UST.

[Graph showing concentrations of normal alkanes C5 through C15]
If we mix one gasoline with only itself, and do a regression for n-alkanes against itself where no HC changes are occurring, we must obtain a straight line.
Hydrocarbon degradation statistics

Case 1: if we compare UST contents (X-axis) with the outside soil HC (Y-axis), a different picture emerges - HC loss, *i.e.*, degradation of n-alkanes.
Hydrocarbon degradation statistics

Case 1 pattern shows loss of n-alkanes in the soil sample compared with the starting material. The curvilinear relationship below the individual alkane line, a mass loss, *i.e.* degradation.

If there were to be a curvilinear relationship above the line, it would mean that individual hydrocarbons have been proportionally added when the UST gasoline was released to the soils. Enrichment does not occur in degradation but may if another HC source is present.
Hydrocarbon degradation statistics

There are two ways of modeling this behavior mathematically for Case 1:

Linear modeling of loss showing how much was lost (or gained) from the Y-axis compared with the starting material.

Polynomial modeling of loss to determine how many factors are needed to define a statistically significant relationship.
Case 1: Extending the Y-axis to the negative shows the value of the b factor in linear equation $Y = mX + b$.

Y-axis is negative.
Hydrocarbon degradation statistics

Case 1: But a (Y = mX+nX^2 +b) quadratic model, the two factors tells us how many gasolines we have, starting gas and another (degraded) gas.
Hydrocarbon degradation statistics

This type of analysis can be done for each PIANO fraction in Case 1.

The most important aspect of the analysis is that the linear approach gives us a measure of the % loss of the entire fraction (we have seen only paraffin fraction), while the quadratic approach counts the number of different gasolines we have in the system.

Plus the statistics: r^2 and significance (p values).
Hydrocarbon degradation statistics

What does this analysis give us where one gasoline is not like the other, *i.e.*, not manufactured by the same producer.

Two alternatives:

Degradation - if solely from 1 source and/or potential mixing from another degraded source.

Enrichment – mixing from 2 or more sources.
Hydrocarbon degradation statistics

Of course, Case 1 is relatively simple. On the more complex side is Case 2...
Hydrocarbon degradation statistics

Case 2:

- Area where net enrichment is present in soil sample with little HC degradation as compared with UST contents.

- One to one mixing line. Slope = 1.0 meaning equal mixing of each X and Y.

- Addition of higher molecular weight n-alkanes from leaded gasoline in UST.

- No net n-alkane degradation – more here than expected.
Hydrocarbon degradation statistics

Case 2:

Isoparaffin area where a blended enrichment is present in the soil sample compared with the UST contents.

One to one mixing line. Slope = 1.0 meaning equal mixing of each X and Y.
Hydrocarbon degradation statistics

Case 2: Quadratic, i.e., 2 factors: a little more statistically significant.
Hydrocarbon degradation statistics

Case 2: Cubic, i.e., 3 factors:

Slightly more statistically significant yet.
Hydrocarbon degradation statistics

Case 2: Quartic, i.e., 4 factors
As the number of factors increases, r^2 increases somewhat.
Hydrocarbon degradation statistics

Again, Case 2 data can be analyzed for each fraction, for each sample for each fraction until all five PIANO fractions have been analyzed.

What the investigator is left with at the end is an understanding of how gasolines in the soils were blended compared with the starting material in the UST being examined for loss.

In Case 2, no loss from the UST, gain once the HCs were in soils, *i.e.*, other sources, not USTs.
Hydrocarbon degradation statistics

The degree of the polynomial defines how many mixing sources there are:

If there is evidence of degradation, then the one in the tank counts as one source to the soil.

If there is no evidence for HC degradation, then the one in the tank does not factor into the count as a source to the soils/sediment because it is not involved in the final composition of the gasoline HC backbone in the soils.
Hydrocarbon degradation statistics

Case 2: What about soil v. soil?

SB-5 soils in Case 2 . . . early n-alkanes only v SB-1.
Hydrocarbon degradation statistics

Case 2: SB-5 vs. SB-6 (4-4.5’) in the same type of analysis, we find a different product mix in SB-6. Not from USTs but related.
Hydrocarbon degradation statistics

Case 2: SB-6 (5-5.5)' in the same location has a different product mix deeper into SB-6 than at shallower depths.
Hydrocarbon degradation statistics

Case 2: the comparison of SB-1 (10.5-11.5’) with SB-8.

Evidence of two product distributions.
Case 2: SB-6 (8.25-8.75') with SB-8.

Evidence of two different distributions.
Hydrocarbon degradation statistics

Case 2: Can we measure under the curves? Yes, of course.

Data show 45:55 and 10% overlap between products.
Hydrocarbon degradation statistics

Case 2: For shallower depth at SB-6, the approach, appears to be similar . . .

. . . and data 45:56 and 9 % overlap, i.e. virtually identical.
Hydrocarbon degradation statistics

Best of all, the principles remain the same regardless of scenario. Degradation or enrichment for any UST content model can be used to examine hypothesis testing of UST release(s) for a variety of products.

Case 1 & 2 hydrological analyses demonstrated that release of petroleum products from different tanks would have impacted same loci. Chemical data, thus, reinforced the hydrological transport models for each site.
Hydrocarbon degradation statistics

Both chemical and geological/hydrological results were consistent with the types and timing of petroleum product sales as determined by depositions and/or attorney records search completed for both cases.

On site photography played critical role.

Overall synthesis approach has been written about and discussed in international technical conferences and applied in litigation.
Conclusion:

Pattern assemblage is the focusing of statistics and geochemical principles which produces simple, easily understood “jury exhibits.” Allows an investigator to explain complicated science to non-scientific audiences in a simple manner.

Scientific Question: Why collect an array of geochemical data if you are not going to use it?
Hydrocarbon degradation statistics

Principal Contact:

Dr. Michael J. Wade
Principal
Wade Research, Inc.
110 Holly Road
Marshfield, MA 02050-1724
United States of America

Telephone: (781) 837-5504
e-mail: mjwade@waderesearch.com
on the web: http://www.waderesearch.com
This presentation is the Intellectual Property of Wade Research, Inc.

It is intended for the use of meeting attendees only. No part of this presentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without direct permission in writing from Wade Research, Inc.

Copyright 2015 by Wade Research, Inc.