Why Current GC/MS Methods Produce Inaccurate Concentrations of Alkylated Polycyclic Aromatic Hydrocarbons (PAH) and Sulfur Heterocycles (PASH)

National Environmental Monitoring Conference 2015 July 13 - 17, 2015 Chicago, IL

<u>Nicholas Wilton</u> and Albert Robbat, Jr. Tufts University, Chemistry Department Center for Field Analytical Studies & Technology Medford, MA 02155 albert.Robbat@tufts.edu nicholas.wilton@tufts.edu

Importance of Polycyclic Aromatic Compounds

- Forensics
 - Weathering
 - Source Allocation
 - Liability
- Toxicology
 - Food chain
 - Aquatic/Terrestrial/Benthic
 - Flora/Fauna
 - $PAH_{34} = 18$ Parent PAH + 16 Alkyl PAH
- Remedial investigations
 - Soil, sediment, water
 - Background comparison studies

Parent PAH

Alkylated PAH Homologues

Parent PASH

Sample Complexity

- Coal tar and crude oil contain thousands of unresolved organic compounds that interfere with forensic analyses of PAH and PASH homologues
- GC/MS alone cannot produce clean mass spectra nor differentiate one target compound from another if compounds coelute and/or have same mass spectra

The Problem with Current Methods of Analysis

- A 15-year review of the literature shows 65% of PAH studies rely on selected ion monitoring (SIM) to obtain data
- Of these, the majority use only the molecular ion (1-ion) to detect PAH, the remainder use a second ion (2-ion) to confirm identity
- Commercial labs rely exclusively on retention windows and pattern recognition of SIM/1-ion peaks to quantify alkylated PAH, see ASTM and NOAA methods
- Matrix compounds, PAH and PASH interfere with one another, leading to false positives and inaccurate concentration estimates

NELAC-Certified Analytical Lab Comparison: C₄ Phenanthrenes

Combinatorial Library Building of PAH and PASH Retention Windows and Spectra by GC-GC/MS/PFPD

1D vs. 2D Spectra

SIM/MFPPH: An Improvement Over SIM/1-ion

- Using literature fragmentation patterns for parent PAH and PASH and GC-GC/ MS library patterns for alkylated PAH/PASH, a SIM method was crafted
- SIM/MFPPH:
 - 27 ions/group
 - 1-11 patterns of 3-5 ions per pattern for each homologue
- SIM/1-ion:
 - 9 ions/group
 - One ion for each homologue

SIM/MFPPH Example: C₃ Phenanthrenes

PAH Concentration Misestimation by SIM/1-ion

Compounds	Sample 1 (%)				Sample 2 (%)				Sample 3 (%)			
	Tufts	Literature	Lab A	Lab B	Tufts	Literature	Lab A	Lab B	Tufts	Literature	Lab A	Lab B
C1 Naphthalenes	1	2	0	0	0	1	-3	-3	2	2	1	1
C2 Naphthalenes	0	2	0	0	5	24	4	5	3	20	5	7
C3 Naphthalenes	8	12	11	8	9	19	12	9	5	17	11	6
C4 Naphthalenes	79	845	89	89	42	246	82	82	5	76	21	21
C1 Fluorenes	0	38	52	-21	6	35	48	-30	2	21	41	-41
C2 Fluorenes	0	48	121	6	9	41	87	14	6	30	71	8
C3 Fluorenes	288	442	1920	397	0	51	280	49	3	51	239	47
C1 Phenanthrenes	4	8	17	5	4	15	24	4	3	22	28	3
C2 Phenanthrenes	9	20	4	8	7	17	6	8	2	11	2	1
C3 Phenanthrenes	91	158	131	129	46	100	80	75	29	49	45	44
C4 Phenanthrenes	176	1360	2180	371	ND	ND	FP	ND	136	601	571	355
C1 Pyrenes	3	5	5	3	5	9	10	5	4	7	7	4
C2 Pyrenes	29	78	83	n/a ^b	11	33	46	n/a	8	35	42	n/a
C3 Pyrenes	452	542	466	n/a	FP	FP	FP	n/a	FP	FP	FP	n/a
C1 Chrysenes	4	24	18	11	21	54	51	24	6	19	21	8
C2 Chrysenes	1	43	107	90	32	63	105	86	11	81	86	59
C3 Chrysenes	210	363	1270	1130	ND	ND	ND	ND	FP	FP	FP	FP
C4 Chrysenes	441	2090	1340	1470	ND	ND	ND	ND	ND	FP	FP	FP

SIM/MFPPH vs. SIM/1-ion and Full-Scan Detection Limits

	SIM/1-ion				SIM/MFPF	РΗ	Full Scan			
Compound	R ²	RF (%RSD)	IDL (ng/mL)	R ²	RF (%RSD)	IDL (ng/mL)	R ²	RF (%RSD)	IDL (ng/mL)	
Naphthalene	0.9998	1.12 (2.50)	0.79 ± 0.26	0.9991	1.21 (8.49)	1.34 ± 0.45	0.9980	1.16 (4.78)	22.5 ± 7.51	
Acenaphthylene	0.9973	1.72 (10.4)	1.00 ± 0.34	0.9997	2.24 (5.03)	1.55 ± 0.52	0.9993	2.12 (6.33)	11.7 ± 3.72	
Acenaphthene	0.9969	1.01 (10.8)	0.80 ± 0.27	0.9994	1.31 (10.3)	1.38 ± 0.46	0.9980	1.32 (4.48)	7.97 ± 2.66	
Fluorene	0.9965	1.13 (10.1)	0.77 ± 0.26	0.9993	1.41 (9.64)	1.88 ± 0.63	0.9989	1.39 (2.20)	23.98 ± 8.00	
Phenanthrene	0.9968	1.09 (4.65)	1.01 ± 0.34	0.9988	1.08 (16.2)	1.37 ± 0.46	0.9989	1.12 (4.14)	10.2 ± 3.42	
Anthracene	0.9962	0.92 (12.6)	0.86 ± 0.29	0.9990	1.07 (3.00)	1.07 ± 0.36	0.9993	1.09 (2.58)	10.5 ± 3.33	
Fluoranthene	0.9940	1.02 (14.0)	0.88 ± 0.29	0.9982	1.28 (7.93)	0.83 ± 0.28	0.9994	1.13 (1.76)	53.2 ± 17.7	
Pyrene	0.9955	1.07 (14.8)	0.88 ± 0.29	0.9984	1.30 (8.54)	0.96 ± 0.32	0.9991	1.19 (2.59)	20.0 ± 6.37	
Benz[a]anthracene	0.9973	0.99 (12.1)	1.62 ± 0.54	0.9993	1.25 (14.5)	1.29 ± 0.43	0.9987	1.12 (7.79)	52.1 ± 17.4	
Chrysene	0.9966	1.10 (12.0)	1.64 ± 0.55	0.9992	1.16 (18.8)	1.13 ± 0.38	0.9998	1.19 (5.57)	17.4 ± 5.79	
Benzo[b]fluoranthene	0.9984	1.25 (13.0)	1.85 ± 0.62	0.9996	1.30 (14.1)	1.11 ± 0.37	0.9986	1.25 (2.63)	63.8 ± 21.3	
Benzo[k]fluoranthene	0.9980	1.08 (11.9)	1.70 ± 0.57	0.9994	1.39 (4.18)	1.31 ± 0.44	0.9987	1.32 (3.60)	48.6 ± 16.2	
Benzo[a]pyrene	0.9988	0.86 (3.65)	2.15 ± 0.72	0.9997	1.24 (3.56)	1.21 ± 0.41	0.9974	1.24 (2.78)	73.1 ± 24.4	
Indeno[1,2,3-cd]pyrene	0.9993	0.60 (17.7)	1.42 ± 0.45	0.9998	1.22 (5.75)	1.64 ± 0.55	0.9930	1.25 (7.51)	75.1 ± 25.0	
Dibenz[ah]anthracene	0.9989	0.53 (18.8)	1.03 ± 0.33	0.9995	1.18 (6.72)	1.11 ± 0.37	0.9926	1.25 (4.22)	85.0 ± 28.4	
Benzo[ghi]perylene	0.9995	0.81 (10.1)	1.23 ± 0.39	0.9998	1.24 (13.3)	2.70 ± 0.90	0.9974	1.41 (3.58)	63.8 ± 21.3	

Misestimation of Toxicity According to PAH₃₄

	Sediment Concentr	Toxic Units				
	All Meth	All Methods				
Parent PAH	15.414	0.5632				
	SIM/MFPPH (%RSD)	Lab A	Lab B	SIM/MFPPH	Lab A	Lab B
C1 Naphthalene	0.944 ± 9.7	0.92	0.92	0.0513	0.05	0.05
C2 Naphthalene	1.360 ± 2.7	1.41	1.42	0.0643	0.0667	0.0673
C3 Naphthalene	0.696 ± 6.1	0.782	0.762	0.0289	0.0325	0.0317
C4 Naphthalene	0.110 ± 3.8	0.2	0.2	0.004	0.0074	0.0736
C1 Fluorene	1.000 ± 1.4	1.49	0.701	0.0397	0.0588	0.0277
C2 Fluorene	0.407 ± 2.8	0.762	0.47	0.0143	0.0268	0.0164
C3 Fluorene	0.197 ± 7.6	0.748	0.294	0.0062	0.0235	0.0092
C1 Phenanthrene	2.200 ± 3.3	2.74	2.29	0.0794	0.988	0.0826
C2 Phenanthrene	0.896 ± 6.3	0.948	0.965	0.029	0.0307	0.0312
C3 Phenanthrene	0.244 ± 2.1	0.439	0.428	0.0071	0.0128	0.0125
C4 Phenanthrene	ND	0.38	ND	ND	0.01	ND
C1 Pyrene	2.250 ± 3.5	2.47	2.36	0.0706	0.0774	0.0741
C1 Chrysene	0.693 ± 3.2	1.05	0.857	0.018	0.0273	0.0223
C2 Chrysene	0.193 ± 3.9	0.395	0.358	0.0046	0.0095	0.0086
C3 Chrysene	ND	ND	ND	ND	ND	ND
C4 Chrysene	ND	ND	ND	ND	ND	ND
			ΣΕЅΒΤυ	0.981	1.09	1
		% Diff		11	2	

Analysis by GCxGC/MS

- Comprehensive two-dimensional gas chromatography) (GCxGC/MS) mass spectrometry offers increased resolution of target compounds from matrix components
- Improved sensitivity due to compression of 2nd dimension peaks
- Improves forensic fingerprinting of oil and tar via weathering maps

Improved Accuracy of Alkylated PAH by GCxGC/MS

Compound/Homologue	GC×GC/MS (µg/g)	GC/MS (µg/g)	% RPD	2.5×AL (μg/g) and ¹ (RPD)	Compound/Homologue	GC×GC/MS (µg/g)	GC/MS (µg/g)	% RPD	2.5×AL (μg/g) and ¹ (RPD)
Naphthalene	0.7	0.7	0	5 (100)	Pyrene/Fluoranthene	73	72	1	262.5 (100)
C ₁ Naphthalenes	8.0	10	-20		C ₁ Pyrenes	61	76	-20	
C2 Naphthalenes	15	19	-21		C ₂ Pyrenes	17	22	-23	
C3 Naphthalenes	11	11	0		C ₃ Pyrenes	4.2	1.9	121	
C4 Naphthalenes	4.4	2.1	110		C ₄ Pyrenes	1.1	ND	N/A	
Fluorene	25	23	9	35 (100)	C ₁ 2-Ring PASH	2.0	2.3	-13	
C ₁ Fluorenes	24	21	14		C ₂ 2-Ring PASH	3.6	4.3	-16	
C ₂ Fluorenes	13	9.7	34		C ₃ 2-Ring PASH	4.3	4.7	-9	
C ₃ Fluorenes	2.9	0.8	263		C ₄ 2-Ring PASH	1.4	1.3	8	
C, Fluorenes	1.6	ND	N/A		Dibenzothiophene	22	20	10	
Phenanthrene/Anthracene	93	84	11	355 (100)	C ₁ 3-Ring PASH	30	29	3	
C, Phenanthrenes	78	87	-10		C ₂ 3-Ring PASH	22	19	16	
C ₂ Phenanthrenes	20	24	-17		C ₃ 3-Ring PASH	9.7	7.3	33	
C ₃ Phenanthrenes	5.5	6.8	-19		C ₄ 3-Ring PASH	1.9	0.6	217	
C, Phenanthrenes	1.3	0.5	160		C ₁ 4-Ring Fused PASH	17	14	21	
Benzo(a)anthracene/Chrysene	29	34	-15	0.25(60)	C ₂ 4-Ring Fused PASH	7.3	0.0	11	
C. Chrysenes	27	37	-27	0.20 (00)	C ₃ 4-Ring Fused PASH	0.7	ND	N/A	
C, Chrysenes	3.0	3.3	-9		C 4 Ping Condensed PASH	7.2	0.8	-25	
C. Chrysenes	0.8	ND	N/A		C 4 Ring Condensed PASH	7.5	3.2	20	
C Chrysenes	ND	ND	N/A		C 4 Ping Condensed PASH	5.5	5.2	- <u>9</u>	
C4 Chrysenes	ND	ND	10/14		C1 4-King Condensed PASH	0.7	0.0	12	

Weathering Maps and Property Estimation

Conceptual Coal Tar Model

- are components volatizing?
- has dissolution stopped?
- what is bioaccessible/available?
- is remediation necessary?

- Dissolution: aqueous solubility (S_W)
- Evaporation: vapor pressure (V_P)
- Organic phase partition: octanol-water coefficient (K_{OW})

Weathering Maps and Property Estimation

Conclusions

- Methods that rely on SIM/1-ion overestimate alkyl PAH and PASH concentrations, while a single pattern underestimates
- Using automated sequential GC-GC/MS/PFPD, a library of fragmentation patterns for alkyl PAH/PASH was constructed
- Literature and library patterns were assembled into a standardized method for GC/MS: SIM/MFPPH
- GCxGC/qMS (full-scan) was used to quantify PAH and PASH in a sample for the first time and produce weathering maps
- Future work will see the development of GCxGC/MS: SIM/ MFPPH