

Mixed Halogen Dioxins and Furans in Controlled Burn Samples Determined Using Gas Chromatography-Ion Mobility

D. Stevens¹, K. Organtini², L. Mullin^{1,3}, A. Ladak¹

Waters Corporation, Milford, MA 01757
The Pennsylvania State University, University Park, PA, 16802
Örebro University, 701 82 Örebro Sweden

Overview

- Human Exposure to Dioxins
- Simulated Burn Study
- Comparing Magnetic Sector to Tandem Quadrupole Data
- Ion Mobility Investigation
- Conclusion

Effect of Large Scale Fires

- World Trade Center
 - -New York City (2001)
 - -50,000 first responders
 - 19% increase in total cancer rates among exposed NYC firefighters
 - Prostate, thyroid, and multiple myeloma cancers most prominent
- Plastimet Fire
 - -Hamilton, Ontario (1997)
 - -294 firefighters at scene

What is something they all have in common?

Potency studies in human liver cells

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

9. o .0. o .0	Nu					
	Compound	replicates	Potency			
	2378-TCDD	21	1.00			
Cell Nucleus ARNT AhR CCC DRE CYP1A1	2Br, 378Cl DD	18	0.99 ± .13			
	23Br, 78Cl DD	19	0.84 ± .10			
	2378-TBDD	17	0.77 ± .14			
	2378-TCDF	21	0.83 ± .07			
	3Br, 278Cl DF	20	0.97 ± .12			
	23Br, 78Cl DF	20	1.02 ± .15			
Dioxin	2378-TBDF	21	0.86 ± .10			
DOI 1	0.1021/acs.analcher	n.5b01705				
Ah ARN						
CYP1A1 proximal promo	ter Lucife	erase	PENNSTATE Eberly College of Science 5			

Simulated Burn Studies

2013

Household Fire

- Mattress
- Sofa Chair
- Vinyl / Wood Chair 2 Carpets
- Carpet
- Pillows
- Television

Electronics Fire

- Televisions •
- Microwave
- Printers
- Computer monitors Computer Towers
- Laptop
- Cables/Wires

2014

Household Fire

- 2 Sofa Chairs
- Vinyl and Metal Chair
- Pillows and Cushions
- Coffee Table
- Vinyl Kitchen Chairs

Electronics Fire

- Televisions
- Microwave •
- **Computer Monitors** ٠
- VHS tapes
- Keyboards
- Used Ink Cartridges

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

Can APGC/MS/MS be Qualified for Dioxin Analysis?

Waters THE SCIENCE OF WHAT'S POSSIBLE.

- Penn State and the Ontario Ministry of Environment
 - Compare reference materials run on both the Autospec and Xevo APGC-TQS

Sensitivity Evaluation

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

DOI 10.1021/acs.analchem.5b01705

Magnetic Sector v. Tandem Quad

			Soil matrix (n=10)		Fish matrix (n=10)	
			APGC-MS/MS	GC-HRMS	APGC-MS/MS	GC-HRMS
Mothod	Compound	units	MDL	MDL	MDL	MDL
Method	2,3,7,8-TCDF	pg/g	0.17	0.68	0.21	0.77
Detection	2,3,7,8-TCDD	pg/g	0.15	0.80	0.23	4.29
Limit (MDL)	1,2,3,7,8-PeCDF	pg/g	1.32	2.64	1.96	3.47
	2,3,4,7,8-PeCDF	pg/g	0.48	2.22	0.31	2.63
	1,2,3,7,8-PeCDD	pg/g	0.39	3.85	0.55	1.83
TQ-S v.	1,2,3,4,7,8-HxCDF	pg/g	0.78	2.28	0.53	2.99
Autospec	1,2,3,6,7,8-HxCDF	pg/g	0.54	1.01	0.30	2.65
	1,2,3,7,8,9-HxCDF	pg/g	0.41	2.21	0.51	2.68
	2,3,4,6,7,8-HxCDF	pg/g	0.37	2.30	0.54	1.86
TQ-S MDLs	1,2,3,4,7,8-HxCDD	pg/g	0.62	3.79	0.70	6.02
2 - 20	1,2,3,6,7,8-HxCDD	pg/g	0.40	3.01	0.40	0.82
	1,2,3,7,8,9-HxCDD	pg/g	0.35	4.28	0.76	4.05
times lower	1,2,3,4,6,7,8-HpCDF	pg/g	0.28	3.36	0.50	5.79
	1,2,3,4,7,8,9-HpCDF	pg/g	0.56	4.87	0.84	2.93
	1,2,3,4,6,7,8-HpCDD	pg/g	0.41	1.62	1.24	4.80
	OCDF	pg/g	0.74	4.85	1.99	3.71
	OCDD	pg/g	1.42	4.49	1.26	7.46

1: MRM of 11 Channels AP+ 305.9 > 242.9 (TCDF)

Firefighter helmet wipes

Model exposure of firefighters to PXDD/F's

Detection of Mixed Halogenated Dioxins

Eberly College of Science

QQQ v HRMS

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

Goals of Combining HRMS with IMS

- IMS = additional separation based on size, shape and charge state of an analyte
 - Collisional Cross Section (CCS)

IMS Uses

- Overcome chemical noise limits in MS/MS
- Improve MRM methods with <70 or > 120% recoveries
- Spectral clean up
- Avoid false positive/negative results
- Prevent unnecessary failure of biomarker validation
- ID relationships among analytes compound class
- Resolve compounds chromatography does not as well as isomers, isobars, charge states, and protomers

Ion Mobility Overview

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

Ion Mobility Separation Isomers

Where's Waldo?

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

Where's Waldo?

Where's Waldo?

HDMS^E

- Provides accurate mass on precursors and product ions by rapidly alternating between high and low energy
 - Clean spectra for intact molecular ion and all fragments
 - For comprehensive structural elucidation

CCS/RT Comparison for IDs in Samples

High and Low Energy HDMS^E Spectra

RTs, Fragments and Collisional Cross Section (CCS) for Available Standards

Waters

			Theoretical	Mass			
PXDD	Formulae	RT	Monoisotopic	Error	CCS (Å^2)	2) Fragments (Da)	
			Mass (Da)	(ppm)			
8-Br, 2,3-Cl dibenzofuran	C12H5OBrCl2	19.21	313.8896	-0.79	138.71	206.9768; 172.0080	
3-Br, 2,7,8-Cl dibenzofuran	C12H4OBrCl3	22.74	347.8506	-3.57	145.64	240.9379; 205.9690	
4-Br, 2,3,7,8-Cl dibenzofuran	C12H3OBrCl4	27.18	381.8116	-2.1	151.88	318.8484; 274.8989; 239.9293	
1.2.Br. 7.8.Cl dihenzofuran	C12H4OBr2Cl2	24 68	201 2001	-20	145 68	312.8823; 284.8873; 222.9639	
	CIZI140DIZCIZ	24.00	391.8001	-2.9	145.00	255.9059	
1,3-Br, 2,7,8-Cl dibenzofuran	C12H3OBr2Cl3	29.39	425.7611	-2.59	152.52	346.8433; 267.9250	
7-Br. 2 3-Cl dibenzo-n-dioxin	C12H5O2BrCl2	19.72	329 885	1.21	143,18	266.9212; 222.9717; 160.0080	
		10172	0101000		110110	300.8823; 256.9328;	
2-Br, 3,7,8-Cl dibenzo-p-dioxin	C12H4O2BrCl3	23.27	363.8455	-3.01	149.97	221.9639; 193.9690	
						334.8433; 290.8938;	
2-Br, 1,3,7,8-Cl dibenzo-p-dioxin	C12H3O2BrCl4	27.61	397.8059	-2.74	156.12	227.9300	
2,3-Br, 7,8-Cl dibenzo-p-dioxin	C12H4O2Br2Cl2	25.77	407.7939	-0.14	152.7	344.8318; 300.8823	
						240.9379; 205.9690;	
8-Br, 2,3,4-Cl dibenzofuran	C12H4OBrCl3	22.83	347.8506	1.15	145.31	268.9328	
						312.8823; 284.8873;	
2,3-Br, 7,8-Cl dibenzofuran	C12H4OBr2Cl2	25.19	391.8001	-3.06	147.88	233.9639	

*mix 2 run separately as well as in mix analysis to ensure retention times

Results: QC Injections

Searching for additional congeners

Waters

Other Mixed-halogenated Components

Waters THE SCIENCE OF WHAT'S POSSIBLE.

In addition to congeners in standards, more halogenated compounds were observed when XIC was searched

Proposed PXDD/F's in Wire Extract

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

Sample Identifications

- Screening list updated to include all theoretical PXDD/F's
- All IDs required to have a diagnostic fragment (-COX loss)
- In-source fragments observed and removed accordingly

PXDD/Fs in Controlled Burn Samples

Conclusions

- APGC/MS/MS provides improved sensitivity
 - + 20 to 40 X versus magnetic sector
- PXDDs and PXDFs found in nearly all fire debris samples
 - APGC allowed detection of more compounds than previous techniques
- IMS provides additional information for ID of congeners
 - Important for congeners for which no commercial standard exists yet

Acknowledgements

- Penn State University
 - Biochemistry, Microbiology, and Molecular Biology Department
 - Dorman Research Group
- FESTI
 - Brian Ross
- Ontario Ministry of the Environment
 - Eric Reiner
 - Terry Kolic
- Wellington Laboratories
- Restek Corporation

Waters

ntario

MINISTRY OF THE ENVIRONMENT

