Ron Honnold¹, Matthew Curtis¹, Dale Walker¹ ¹Agilent Technologies, Santa Clara, CA

Introduction

The goal of this project is to show the applicability of EI GC/MS/MS measurement for the detection of Nnitrosamines in drinking water. Nitrosamines like NDMA are inadvertent by-products of wastewater treatment through chlorination. Bench-top GC-MS/MS with EI is rapidly gaining prominence in many environmental and water quality control laboratories around the world. Accordingly, a sensitive and reliable analytical method for the analysis of Nnitrosamines using tandem quadrupole GC-MS/MS with EI is of particular interest to the water industry. Current developments in GC-MS tandem quadrupole technology deliver very high sensitivity and selectivity in the small molecule mass range and allow the detection of nitrosamines meeting and exceeding

Experimental

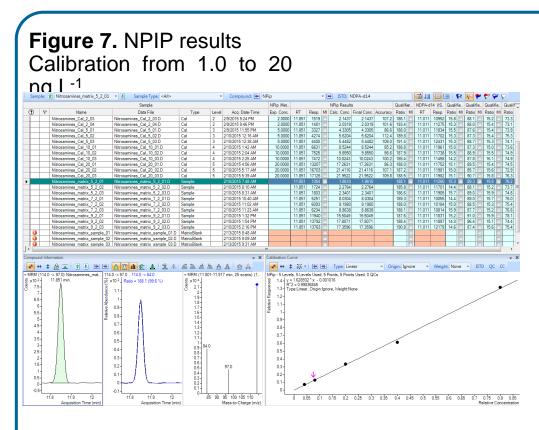
This method shows the advancements in instrumentation and sensitivity to achieve detection limits below those currently being used. The analytical method was developed on the Agilent 7890B Gas Chromatograph (GC) coupled to the 7010 Mass Spectrometer (MS) in positive electron ionization mode (EI), using HES (high efficiency source). The GC was configured with a multi-mode inlet (MMI), 30 meter DB-1701 column, and a 7693 Autosampler (A/S). The analysis time was less than 14.0 minutes. Duplicate calibration curves were set up using 5 levels from 1.0 ng L^{-1} to 20 ng L^{-1} extracted and 1.25 ng L⁻¹ to 20 ng L⁻¹ solvent standards. Data analysis was carried out using MassHunter Software.

EPA method 521, (2004) outlines employing ion trap MS based liquid CI/MS/MS measurements for the detection of N-nitrosamines, but these types of instruments are no longer available from any vendor. The method presented was designed to offer current instrumentation to determine eight nitrosamines in drinking water satisfying EPA method 521 requirements. This method used the sample preparation protocol outlined in the EPA method to determine eight nitrosamines in drinking water by solid phase extraction and gas chromatography with a 0.5 microliter injection and electron ionization tandem mass spectrometry (MS/MS). The required lowest minimum reporting limit (MRL) is 1.2 ng L⁻¹ (NDPA) and higher for all the other analytes using liquid PCI. EPA method 521 utilizes large volume (20ul) to reach these limits. The use of

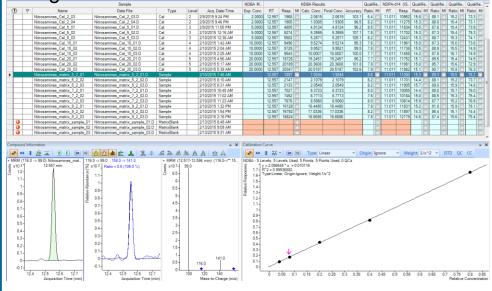
Experimental

Table 1 . List of analytes Retention Times, Quantitation Mass, and Linearity									
Name	ABR	R/T	Quant Mass	R ²					
N-nitrosodimethylamine	NDMA-d6	7.10	80>50	IS/Surr					
N-nitrosodimethylamine	NDMA	7.15	74>44	0.99968					
N-nitrosomethyethylamine	NMEA	8.28	88>71	0.99981					
N-nitrosodiethylamine	NDEA-d10	9.10	112>94	IS					
N-nitrosodiethylamine	NDEA	9.13	102>85	0.99996					
N-nitrosodipropylamine	NDPA-14	11.00	144>126	IS					
N-nitrosodipropylamine	NDPA	11.08	113>71	0.99922					
N-nitrosomorpholine	NMOR	11.47	86>56	0.99993					
N-nitrosopyrrolidine	NPYR	11.64	100>70	0.99131					
N-nitrosopiperdine	NPIP	11.85	114>84	0.99837					
N-nitrosodi-n-butylamine	NDBA	12.56	116>99	0.99937					

Column		DB-1701ms, 30 m, 0.25 mm ID,							
		1.0 µm	film thickne	ess					
Injection volu	ume	0.5 μL 2mm Dimp							
					UI Line	UI Liner			
Splitless			Purge f	low to split	100 ml	100 mL min ⁻			
			vent		at 0.8 r	at 0.8 min			
MMI inlet ter	nperature		35 °C for 0.1 min, 600 °C min ⁻¹ to 260 °C						
Oven tempe	rature program	า		or 1 min					
	1 - 5			nin ⁻¹ to 80 °	°C, for 0 n	nin.			
			15 °C n	nin ⁻¹ to 180	°C, for 3	min			
				nin ⁻¹ to 260					
Carrier gas				at 0.9 mL i					
5			flow						
Transfer line	temperature		260 °C						
	-								
MS parame	ters used in tl	he m	ethod:						
MS parameters		he m		ng HES ion	source				
-	ode	he m		ng HES ion	source				
Ionization m Source temp	ode	he mo	EI; usin	ng HES ion	source				
Ionization m Source temp Quadrupole	ode perature temperatures	he m	EI; usin 280°C		source				
Ionization m Source temp	ode perature temperatures	he mo	El; usin 280°C 150°C	min ⁻¹	source				
Ionization m Source temp Quadrupole Collision gas	ode berature temperatures		El; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹					
Ionization m Source temp Quadrupole Collision gas Ouench gas	ode berature temperatures	he mo	El; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d	Transiti on	СЕ			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6	ode berature temperatures Transition 80>50.1	CE 6	El; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA	Transiti on 130>43	20			
Ionization ma Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6	ode berature temperatures Transition 80>50.1 80>48.1	CE 6 14	EI; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA	Transiti on 130>43 130>113	20 8			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6 NDMA	ode berature temperatures Transition 80>50.1 80>48.1 74>42.1	CE 6 14 14	El; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA NDPA NMOR	Transiti on 130>43 130>113 116>56.1	20 8 20			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6 NDMA NDMA	ode berature temperatures Transition 80>50.1 80>48.1 74>42.1 74>44.1	CE 6 14 14 6	EI; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA NDPA NMOR NMOR	Transiti on 130>43 130>113 116>56.1 116>86	20 8 20 4			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6 NDMA NDMA NDMA	ode berature temperatures Transition 80>50.1 80>48.1 74>42.1 74>44.1 88>71	CE 6 14 14 6 6	EI; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA NDPA NMOR NMOR NMOR NPYR-d8	Transiti on 130>43 130>113 116>56.1 116>86 108>78.1	20 8 20 4 10			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6 NDMA-d6 NDMA NDMA NDMA NDMA NDMA	ode berature temperatures Transition 80>50.1 80>48.1 74>42.1 74>44.1 88>71 88>71 88>43	CE 6 14 14 6 6 10	EI; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA NDPA NMOR NMOR NMOR NPYR-d8	Transiti on 130>43 130>113 116>56.1 116>86 108>78.1 108>62.1	20 8 20 4 10 14			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6 NDMA-d6 NDMA NDMA NDMA NMEA NMEA NDEA-d10	ode berature temperatures Transition 80>50.1 80>48.1 74>42.1 74>44.1 88>71 88>71 88>43 112>94.1	CE 6 14 14 6 6	EI; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA NDPA NMOR NMOR NPYR-d8 NPYR-d8 NPYR-d8	Transiti on 130>43 130>113 116>56.1 116>86 108>78.1	20 8 20 4 10 14 10			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6 NDMA-d6 NDMA NDMA NDMA NMEA NMEA NDEA-d10 NDEA-d10	ode berature temperatures Transition 80>50.1 80>48.1 74>42.1 74>44.1 88>71 88>71 88>43	CE 6 14 14 6 6 10	EI; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA NDPA NMOR NMOR NMOR NPYR-d8 NPYR-d8 NPYR-d8 NPYR	Transiti on 130>43 130>113 116>56.1 116>86 108>78.1 108>62.1 100>70 100>55	20 8 20 4 10 14 10 10			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6 NDMA-d6 NDMA NDMA NDMA NMEA NMEA NDEA-d10	ode berature temperatures Transition 80>50.1 80>48.1 74>42.1 74>44.1 88>71 88>43 112>94.1	CE 6 14 14 6 6 10 10	EI; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA NDPA NMOR NMOR NPYR-d8 NPYR-d8 NPYR-d8	Transiti on 130>43 130>113 116>56.1 116>86 108>78.1 108>62.1 100>70	20 8 20 4 10 14 10			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6 NDMA-d6 NDMA NDMA NDMA NMEA NMEA NDEA-d10 NDEA-d10	ode berature temperatures Transition 80>50.1 80>48.1 74>42.1 74>44.1 88>71 88>71 88>43 112>94.1 112>62	CE 6 14 14 6 6 10 10 20	EI; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA NDPA NMOR NMOR NMOR NPYR-d8 NPYR-d8 NPYR-d8 NPYR	Transiti on 130>43 130>113 116>56.1 116>86 108>78.1 108>62.1 100>70 100>55	20 8 20 4 10 14 10 10			
Ionization m Source temp Quadrupole Collision gas Ouench gas Compound NDMA-d6 NDMA-d6 NDMA-d6 NDMA NDMA NDMA NDMA NDMA NDMA NDMA NDMA	ode erature temperatures Transition 80>50.1 80>48.1 74>42.1 74>44.1 88>71 88>71 88>43 112>94.1 112>62 102>56.1	CE 6 14 14 6 6 10 10 20 20	EI; usin 280°C 150°C 1.5 mL 4 0 ml	min ⁻¹ min ⁻¹ Compoun d NDPA NDPA NMOR NMOR NMOR NPYR-d8 NPYR-d8 NPYR-d8 NPYR NPYR NPYR	Transiti on 130>43 130>113 116>56.1 116>86 108>78.1 108>62.1 100>70 100>55 114>97	20 8 20 4 10 14 10 10 10			


Analysis of N-nitrosamines in water by Gas Chromatography, Electron Ionization Tandem Mass Spectrometry

Results and Discussion



NMEC 2015

Results and Discussion

Figure 8. NDBA results Calibration from 1.0 to 20 ng -1

Table 2. Recovery Results Average of 3 replicates of 2 ppt Matrix spike

Compound	Conc	Ave. Calc. Conc.	Ave. Recovery	Limits
NDMA	2	2.36	118.20	70-130
NMEA	2	2.23	111.65	70-130
NDEA	2	2.06	102.92	70-130
NDPA	2	1.99	99.70	70-130
NMOR	2	1.94	97.12	70-130
Npyr	2	2.24	111.92	70-130
Npip	2	2.16	107.83	70-130
NDBA	2	2.03	101.55	70-130

 Table 3. MDL/LOQ/LOD; at 95% confidence calculated
from 8 replicates at 1.25 ng L⁻¹ using 0.5 µL injections (all concentrations in ng L⁻¹)

Name	тѕ	RT	Avg. Conc.	Std. Dev.	MDL	LOQ	LOD	EPA MRLs	Nois e	S/N	Avg. Resp	Resp. RSD(%)
NDM A	1	7.15	1.62	0.0471	0.141	0.471	0.141	1.6	5	228	3275	3.9
NME A	2	8.28	1.48	0.0287	0.086	0.287	0.086	1.5	3	258	2073	4.1
NDEA	3	9.13	1.43	0.0579	0.174	0.579	0.174	2.1	3	Inf.	1347	5.3
NDPA	4	11.08	1.29	0.1423	0.427	1.423	0.427	1.2	10	214	238	8.9
NMO R	5	11.47	1.19	0.0411	0.123	0.412	0.123		3	1912	2478	3.9
NPyr	5	11.64	1.32	0.124	0.372	1.240	0.372	1.4	1	1525	375	7.5
NPip	6	11.85	1.41	0.045	0.135	0.450	0.135	1.4	3	216	1206	3.5
NDBA	7	12.56	1.47	0.0595	0.178	0.595	0.178	1.4	8	Inf.	928	3.8

Matrix blanks were interspersed during the calibration and MDL injection sequence to verify there was no carrvover.

All calibration levels were performed using three replicates.

Matrix blanks were spiked at three levels (2, 8, and 15 ppt) to verify recovery. Results at the 2ppt level are listed in Table 2.

Conclusions

The enhanced EI sensitivity of the HES ion source of new generation GC-MS/MS systems meets and exceeds the detection requirements of EPA Method 521, providing a good alternative to the now unavailable PCI MS/MS Ion Trap systems. The rapid EI/MS/MS method was applied to the analysis of samples over several days to validate the application and confirm the stability of the method. The generated results established that EI/MS/MS mode has excellent detection levels ranging from 0.08 - 0.4 ng L⁻¹ with only a 0.5μ L sample injection, well below the required levels. The small injection volume led to less sample on column, less concentration of the sample and less maintenance on the total system. Results of calibration in the 1-20ng L⁻¹ range and recoveries at multiple levels all demonstrated highly sensitive, accurate and reliable performance.

