EPA Method 625 SPE Validation Study – A New Approach

S. Kassner, Phenova P. Bassignani, Fluid Management Systems, Inc. M.Fluornoy, Microbac

Study Participants

Under a program organized and supported by the Independent Laboratory Institute (ILI), a broad coalition representing government, the commercial analytical laboratory community, the technology innovation community and academia worked together to develop a generic protocol for the use of Solid Phase Extraction (SPE) as a technique for concentrating chemical contaminants in aqueous samples for organic chemical analysis.

Study Objectives

- Establish a generic SPE protocol for the validation of Solid Phase Extraction for test methods
- Have embed into the protocol, the proper QC elements necessary to flag any individual sample or product failings.
- Apply that protocol in a blind feasibility study involving multiple segments of the laboratory and vendor community.
- Evaluate that data suitability and study parameters for usage to validate Solid Phase Extraction in test methods.
- Develop a fluid protocol to be used as a template in the application of future methods.

Study History

- Coalition began meeting in 2012
- Began a comprehensive review of existing Vendor SPE applications and EPA method procedures
- Examined the analyte lists found in EPA 625 and cross referenced those individual analytes with optimal sorbent types, pH requirements and other extraction requirements.
- Examined the various different SPE platforms and technologies available on the market.

Study Overview

 The complete study was comprised of two different Phases.

 Each Phase was designed to improve efficiency and the performance for EPA Method 625.

SPE Product Types

Study Participant Contribution

- Over 18 individual products/techniques tested
- 27 Contributing Labs
- Over 100 different extractions and analyses completed
- Hours of data analysis and review

Study Protocol

- Focusing on the analytes from Tables #1 and #2 from EPA 625
 - Additionally OCPs were an optional add on
- Establish a blind Round Robin study
- Require 3 participating labs per product tested
- RR samples to be analyzed in both a clean matrix (DI), TCLP Extraction Fluid # 1 and a synthetic waste water matrix (ASTM D5905)
- Surrogate spikes provided (P2)

Phase 1

Phase One Objectives

- Determine the performance of a board spectrum of market available SPE products in a standardized waste water matrix.
- Compare data from SPE products to current Liquid-Liquid Extraction (LLE) performance.
- Evaluate the data Does SPE work as well as LLF

Phase 1 Analyte Category Data

PAHs Waste Water vs. DI Water

Phenol/Acids Waste Water vs. DI Water

Phthalates Waste Water vs. DI Water

Base/Neutrals Waste Water vs. DI Water

PAH Variability

Phenol Variability

Base/Neutral Variability

Phase 1 Conclusions

- Data demonstrates the across the wide variety of analytes SPE products tested are as accurate as traditional LLE.
- Study results were within the current method criteria for EPA 625 and within the acceptance limits in the TNI FoPT tables.

HOWEVER....

- Issues were noted with the surrogates that did not demonstrate the failure of an extraction or product.
- Rigorous quality control to allow laboratories to know of a potential issue was need provided with the current surrogate list.
- Answer Phase 2

Phase 2

Phase 2 Objectives

- Provide more vendors to participate in the study.
 - ASTM Waste Water matrix provided again.
- Provide a second challenge matrix
 - EPA Method 1311 (Toxicity Characteristic Leaching Procedure or TCLP)
 - Evaluate the results of the new challenge matrix
- Provide a new set of surrogate compounds for evaluation.
 - Evaluate the new surrogate list to analyte recovery
 - Do the surrogates provide the intended quality assurance?

Surrogate Analyte Recoveries Matrix Comparison

Aromatic Surrogate Analyte Recoveries Matrix Comparison

Halogenated Hydrocarbon Surrogate Analyte Recoveries Matrix Comparison

Phthalate Surrogate Analyte Recoveries Matrix Comparison

Surrogate Analyte Recoveries Delta Across Matrix Comparison

Aromatic Surrogate Analyte Recovery Delta

Halogenated Hydrocarbon Surrogate Analyte Recovery Delta

Phthalate Surrogate Analyte Recovery Delta

Phthalate Surrogate/Analyte Delta

Surrogates Selected

- Acenaphthylene-d8
- •Anthracene-d10
- •Benzo(a)pyrene-d12
- •Bis(2-chloroethyl)ether-d8
- •4-Chloroaniline
- Dimethylphthalate-d6
- •Fluorene-d10
- •Nitrobenzene-d5
- •N-Nitrosodimethylamine-d6
- •Pyrene-d10

- •2,4-Dichlorophenol-d3
- •2-Chlorophenol-d4
- •2-Nitrophenol-d4
- •4,6-Dinitro-2-methylphenol-d2
- •4-Methylphenol-d₈
- •4-Nitrophenol-d4
- •Phenol-d5

Phase 2 Conclusions

- Data demonstrates the across the wide variety of analytes
 SPE products tested are as accurate as traditional LLE.
- Study results were within the current method criteria for EPA 625 and within the acceptance limits in the TNI FoPT tables.
- With the exception of Phthalate Surrogates the new batch of analytes were a significant improvement.
- SPE Products perform equivalent to LLE performance across difficult matrices.

Acknowledgements

- SPE Vendors
- Laboratories
- Phenova
- •ILI
- •EPA
- •ACIL
- Restek

Questions?

Shawn Kassner 866-942-2978 shawnk@phenova.com

