

Our EPA 625 SPE Study Goals

- Provide an SPE alternative to traditional LLE
- Develop a procedure with equivalent or improved recoveries
- Decrease time, cost, and labor outputs
- Improve overall productivity without sacrificing mandatory requirements

Our Approach

What did labs want in a new SPE protocol?

- Simple procedure
- Minimize SPE material
- Versatile for multiple sample volumes
- Transfer without major equipment
- Amenable to GC

Our Approach

Provide an SPE procedure that can:

- Handle 500 mL 1 L of waste water
- Improve flow for viscous samples
- Retain and recover all the analytes
- Withstand harsh solvent conditions
- Process in-lab or on-site

First Thoughts

Try traditional silica SPE media?

- C18 or silica SPE
- C18 followed by ion exchange silica SPE
- Tubes and loose media options

Limitations were observed with silica...

- Not as versatile and durable
- Limited selectivity
- Not resistant to deconditioning!
- Flow

We Found A Solution!

Large Particle, Large Pore Polymeric SPE Sorbent

- Versatile and Durable
 Wide range of selectivities
 Multiple particle sizes and formats
- Worry Free
 - Resistant to deconditioning
 - Superior lot-to-lot reproducibility

Versatility: strata

- Small and large particle options
- 5 sorbent chemistries

	Functional Group	Mode	Analyte
Strata-XL	Ž O [°]	Large Particle Reversed Phase	Polar and Non-Polar
Strata-XL-C	$\sum_{i=1}^{n} \bigoplus_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	Large Particle Reversed Phase and Strong Cation-Exchange	Bases
Strata-XL-CW	-	Large Particle Reversed Phase and Weak Cation-Exchange	Bases (including Quater- nary Amines)
Strata-XL-A	The CH _s	Large Particle Reversed Phase and Strong Anion-Exchange	Acids
Strata-XL-AW	Ž [™] O∕ _{NH~NH,}	Large Particle Reversed Phase and Weak Anion-Exchange	Acids (including Sulfonic acids)
Strata-X, X-C, X-A, X-CW, X-AW			Strata-XL, XL-C,

For large volume, viscous samples or dirty samples for improved flow

33 µm, 85 Å

Strata-XL, XL-C, XL-A, XL-CW, XL-AW

100 µm, 300 Å

Versatility: strata

Variety of Formats

- 1, 3, 6, 12, 20, & 60 mL volume
- Tabless tubes
- Online cartridges

Sample Processing

- Several samples at one time
- Multiple port manifold
- Automation using robot

Versatile for a range of sample volumes and workflows

(**≡**)[™]strata[™]-**X** №

Durability: strata

Reduce limitations on preparation

 Traditional silica-based SPE sorbents cannot perform under extremely high or low pH

Improve pH resistance

Strata-X sorbents have a polymeric backbone

Worry Free: strata

- Strata-X polymeric SPE sorbents are resistant to deconditioning
 - Silica-based media may lose phase structure
- Will never experience poor analyte-sorbent interactions due to phase collapse when media dries

Why Strata[™]-XL-C?

Large Particle Reversed Phase And Strong Cation-Exchange

- Widest selectivity for EPA 625
- Maximum flow with reduced clogging
- Large load volume capability
- Amenable to varying instrumentation
- Resistant to deconditioning

Sample Pre-Treatment

- Target sample pH 1 3
 - Spike 2 mL concentrated HCl in 1 L water
- Spike surrogate at 100 µg/L

Notes

- 150 mL sample reservoir tube to load 1 L sample
- Use glass wool above SPE tube frit to prevent clogging with dirty samples

SPE Manifold Set-Up

(≡)"strata"-XX

SPE Protocol

Strata[™]-XL-C 2 g / 20 mL Giga Tube

SPE Protocol

Sample Dry Down

 Dry each elution fraction in a turboVap, under nitrogen (no heat) until the volume is reduced to ~1 mL for each

ohenomenex

Reconstitute

- Combine fractions (~2 mL total) and bring to final volume of ~4 mL with DCM
- Spike 50 µL of IS (1000 µg/mL)
- Inject into GC/MS

Test Lab – Observations

Protocol Components	Traditional LLE	Strata [™] -XL-C SPE	SPE Improvements
Throughput (samples / day)	20	30-35	for 50-75 % Increase
Solvent Usage (mL / sample)	> 360	41	Significant Decrease
Glassware	~ 100 pieces (large)	< 100 test tubes (disposable)	Significant Decrease
Data Quality	Sufficient	Improved	1 Increase
Manual Labor	High	Very Low	Significant Decrease
Procedural Steps	Dozens	6	Significant Decrease

GC/MS Analysis

Optimized GC/MS Parameters

Column:Zebron™ ZB-SemiVolatilesDimensions:30 meter x 0.25 mm x 0.25 µmPart No.7HG-G027-11InjectionSplitless @ 250 °C, 1 µLCarrier Gas:Helium @ 1.6 mL/min (constant flow)Oven Program:40 °C for 0.66 min to 260°C @ 30 °C/min to 295 °C @ 6 °C/min to 325 °C @ 25 °C/min for 2 min

Detector: MSD @ 300 °C, 40-500 amu

Matrix Extraction Results

Results for unknown spike solution

Matrix Extraction Recovery

Surrogato	% Recovery		07 DCD	
Juliogule	Water S1	Water S2	/0 KJU	
Phenol-D5	47.0	41.1	9.6	
2-Chlorophenol-D4	61.1	52.8	10.4	
4-Methylphenol-D8	67.3	59.1	9.2	
bis(2-chloroethyl) ether-D8	65.3	55.9	10.9	
Nitrobenzene-D5	53.7	51.0	3.7	
2-Nitrophenol-D4	63.5	57.4	7.0	
2,4-Dichlorophenol-D3	51.9	46.4	7.8	
4-Chloroaniline-D4	20.1	37.7	43.1	
Dimethylphthalate-D6	84.6	73.1	10.3	
Acenaphthylene-D8	55.3	48.1	9.8	
4-Nitrophenol-D4	79.3	68.0	10.8	
Fluorore-D10	65.5	61.6	4.3	
4,6-Dinitro-2-methylphenol-D2	86.5	70.5	14.4	
Anthracene-D10	52.3	55.0	3.6	
Pyrene-D10	52.4	61.7	11.5	
Benzo(a)pyrene-D12	64.4	68.8	4.7	

Did We Achieve the Goal?

Considerations

- Acidify the sample before loading to maximize acidic and basic analyte retention
- Accommodate viscous samples with a large particle sorbent
- Capture particulates by using glass wool on top of the sorbent bed
- Dry SPE cartridges before elution to remove water
 May prolong evaporation time

Considerations

- Dry down both elution fractions separately
 > Elution 2 contains ammonium hydroxide
 > Reduces GC solvent effect
- Limit analyte loss by preventing complete dry down
- Use sodium sulfate to remove residual water in the sample extract
 - May need to bake out sodium sulfate prior to use
 - > Decreases the dry down time

Conclusion

Recommended EPA 625 SPE Protocol

Simple, easy procedure with large particle, large pore sorbent (Strata[™]-XL-C)

Procedure Advantages

- Cleaner
- Safer
- Similar results
- Easier!

Converting from LLE to SPE results in massive productivity and cost improvements.

nenomenex

Environmental Support www.phenomenex.com/Environmental

- SPE Method Development Tool
- 1,000s of Application Notes
- On-Site Lab Demos
- Environmental Edge Newsletter
- Technical Notes
- Digital Learning Tutorials

Thank You! Questions?