

Contaminants of Emerging Concern in WNS Bats

High Performance Liquid Chromatography in Environmental Monitoring

Eric Redman – Director of Technical Services

August 12, 2016

Presentation Outline

BATS: WHITE-NOSE SYNDROME STATES WITH CONFIRMED CASES

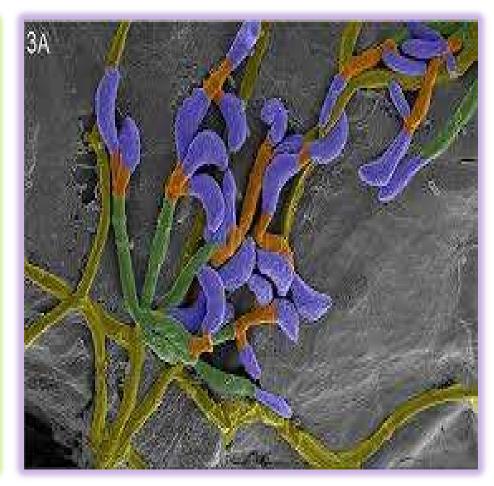
- Introduction
- >Hypothesis
- ≻Analytical Scope
- Prep Procedures
- Analysis Overview
- Analytical Procedure
- Analytical Results
- Complex Chromatography Challenges
- Analytical Retrospective

Habits = increased risk of exposure to bioaccumulating chemicals

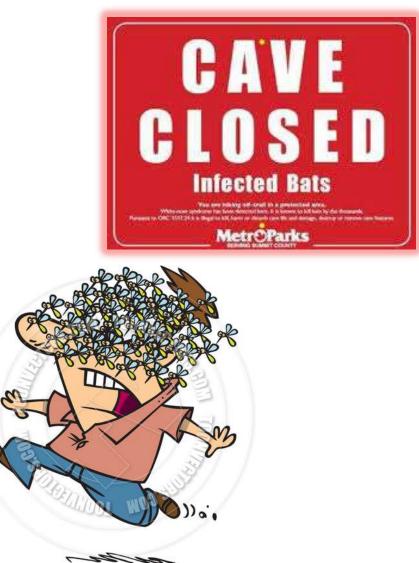
- Forage in aquatic and terrestrial habitats
- ≻Live long lives
- High metabolic rates
- High food intakeInsectivorous diet

Bat Hibernation

Hibernation = more susceptible to effects of low doses


- Not true hibernators
 Annual hibernation cycle
 Extreme fat deposition
 Followed by extreme depletion
 High cave population

density


White Nose Syndrome

- First identified in Feb of 2006
- Emerging disease in North American Bats
- Named for fungal growth on muzzles and wings
- No obvious treatment or prevention

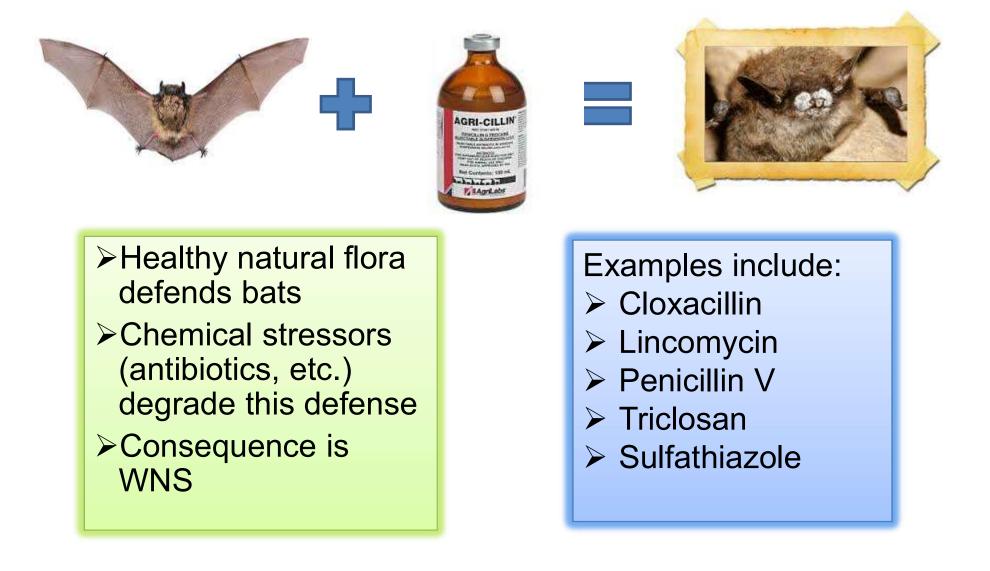
Pseudogymnoascus destructans

- ~ 7 million bat deaths in North America
- Some species declined >90%
- 11 bat species catastrophically affected
- At least 2.4 million pounds of insect go uneaten
- Farmers spend \$3B dollars on pesticides
- Loss of pollination and seed dispersal

What is a chemical stressor? It is a stimuli that disturbs homeostasis.

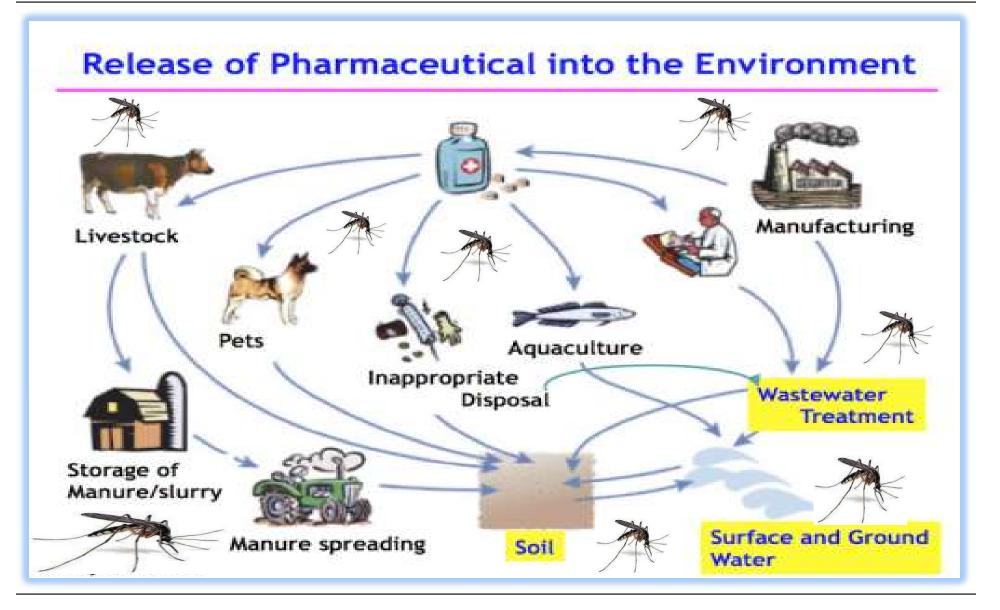
Systems impacted:

- Hibernation
- Immune function
- Disease susceptibility
- Response to WNS



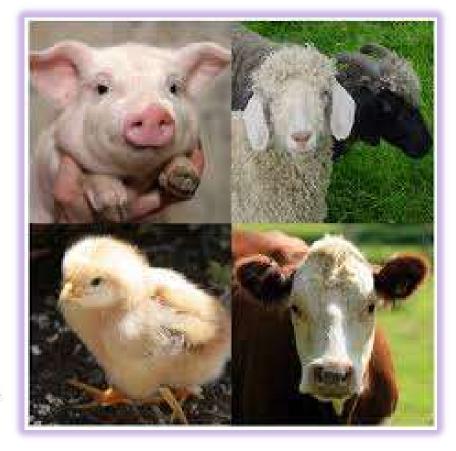
Chemical stressors:

- Organochlorine pest and PCBs
- >Detergents/surfactants
- Antibacterials
- >PPCPs
- >PBDEs
- ➤Many others


<u>TestAmerica</u>

Hypothesis – Specific Antibiotic Stressors

CEC Exposure Pathway



Analytical Scope

What chemical stressors were evaluated?

 PBDEs
 Antibiotics
 Pharmaceuticals (non-antibiotics)
 Endocrine disruptors
 Other PPCPs

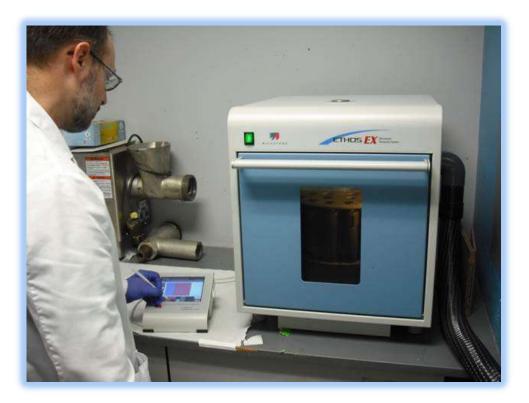
Pre-prep Procedures

Phase 1

Proof of concept – whole bats were milled with dry ice

Phase 2 Resected wings milled with liquid nitrogen

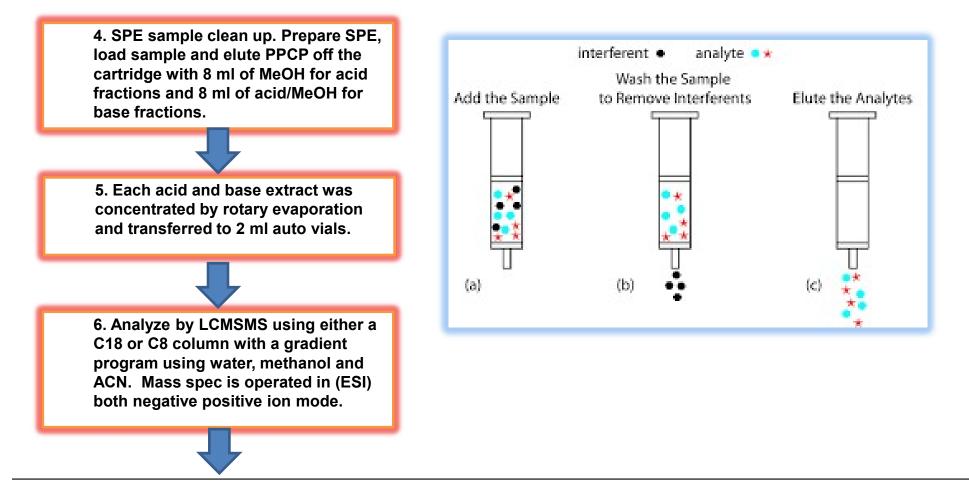
<u>TestAmerica</u>


Prep Procedures

Complex matrix requires complex prep procedures

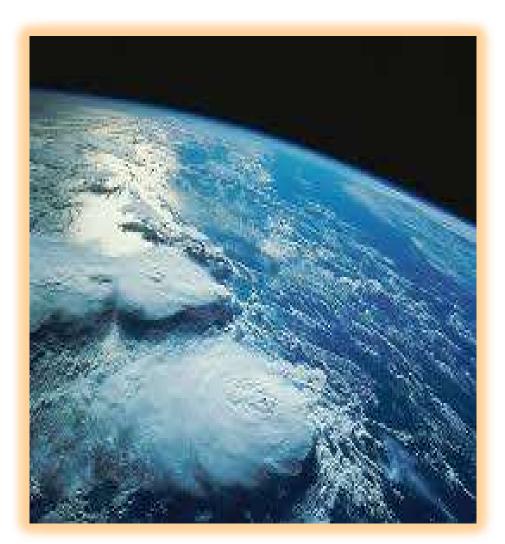
1. Bat carcasses were collected from various locations (2008 - 2010). All were frozen soon after collection and shipped to the lab on dry ice.

2. One or more carcasses – nominal 4 g mass were composited and cryogenically homogenized. Then spiked with isotopically labeled target analytes.


3. Each 4 g sample was split into 2 g fractions for acid and base buffered extractions. Each sample acid and base fraction was sonicated for 30min followed by microwave-assisted extraction.

Prep Procedure - Continued

Complex matrix requires clean up procedures


Analysis Overview

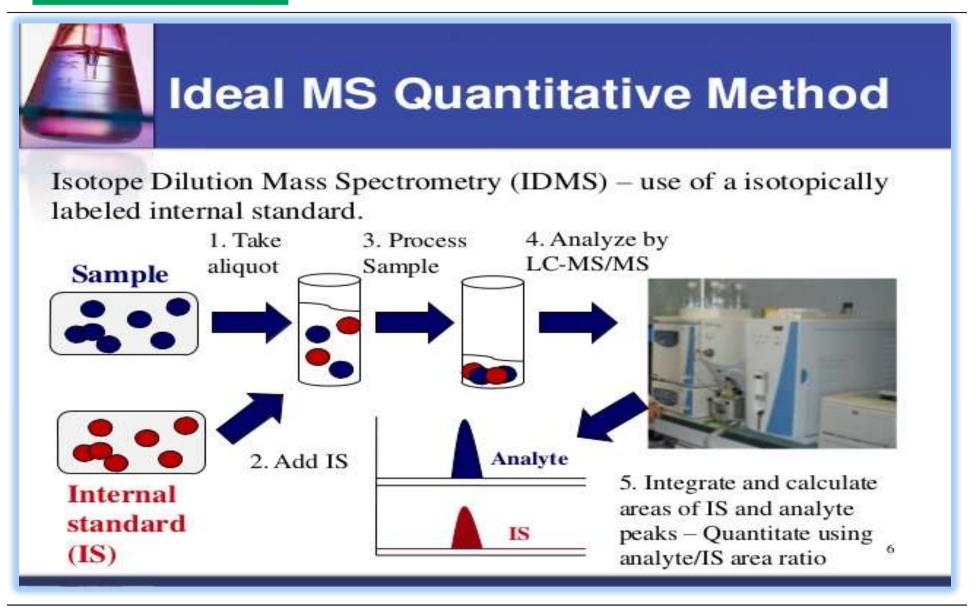
Separate by HPLC

- ➤ 4 extracts per sample
- Selected analytes on different LC columns
- Selected analytes on different solvent and gradient systems

>Determine by MS/MS

- Characteristic ion transitions developed by infusion
- Multipoint calibration curve
- Quantitate by isotope dilution or internal std

Analysis Procedures - Conditions


Parameter		Configuration											
Column	C	C18- 100 x 2.1mm, 3.5um particle size (Waters XTerra C18 MS (PN 186000404), or equivalent)											
Column Temperature		40 °C											
Injection Volume		25 uL loop with partial overflow (Injection volume is consistent with the volume used for the initial calibration).											
Time (minutes)	A %			Flow Rate mL/min	Curve								
0.00	95		5	0.20	Initial								
1.00	95		5	0.20	6								
25.00	0		100	0.20	6								
27.00	0		100	0.20	6								
27.10	95		5	0.20	End of Run								
Capillary Voltage		2.	95 kV	Desolvation Gas Flow	500 L/hr								
Cone Voltage			analyte	Collision Energy	Per analyte								
Extractor Voltage			.00 V	Multiplier Voltage	750 V								
RF lens).3 V	Collision Gas Flow									
Source Temperatu	re		40 °C.	Pressure	~3E-3 mbar								
Desolvation Temperature		38	80 °C.	Scanning Conditions	Per Analyte								
Cone Gas Flow		2	0 L/hr	Dwell/Delay Times (Both Ions)	0.20 sec / 0.05 sec								

Mass Spectrometer Conditions

MS Conditions and Grouping Pharmaceuticals, Personal Care Products and Antibacterials											
Ph											
Analyte	ESI	Transition	Dwell	Cone	Collision	Delay	Group				
-	Mode	Precursor>Product	(Sec)	Voltage	Voltage	(sec)	· · · •				
Acetaminophen	pos	152.00 > 110.10	0.02	30	17	0.06	1				
Albuterol	pos	240.3 >148.2	0.02	15	18	0.01	5				
Amoxicillin	pos	366.10 > 114.10	0.02	14	20	0.01	1,3				
Atenolol	pos	267.30 > 145.20	0.02	35	24	0.01	1,3				
Atorvastatin (Lipitor)	neg	557.50 > 397.50	0.02	38	28	0.01	2,4				
Atrazine	pos	216.2 > 174	0.002	18	18	0.01					
Azithromycin	pos	749.10 > 591.10	0.02	60	32	0.01	1,3				
Bisphenol A	neg	227.2 > 212.20	0.02	36	20	0.01	2,4				
Caffeine	pos	195.00 > 138.00	0.02	30	20	0.01	1				
Carbadox	pos	263.1 > 231.1	0.02	30	14	0.01	1				
Carbamazepine	pos	237.00 > 194.00	0.02	28	20	0.01	1,3,5				
Cefotaxime sodium salt	pos	456.1 > 396.1	0.02	23	12	0.01	1				
Chlortetracycline (CTC)	pos	478.90 > 462.20	0.02	26	25	0.01	1				
Cimetidine	pos	253.40 > 158.90	0.02	23	15	0.01	1,3,5				
Ciprofloxacin	pos	332.10 > 314.10	0.02	22	24	0.01	1,3				
Clarithromycin	pos	748.6 > 158.2	0.02	25	30	0.01	1,3				
Clinafloxacin	pos	366.2 > 348.1	0.02	30	20	0.01	1				
Cloxacillin	pos	468 > 160.1	0.02	25	19	0.01					
Cotinine	pos	177.00 > 79.80	0.02	27	23	0.01	1,3,5				
Codeine	pos	300.2 > 215.2	0.02	38	24	0.01	1				
Demeclocycline	pos	465 > 430.1	0.02	28	27	0.01	1				
Diazepam	pos	285.50 > 222.50	0.02	30	25	0.01	1,3				

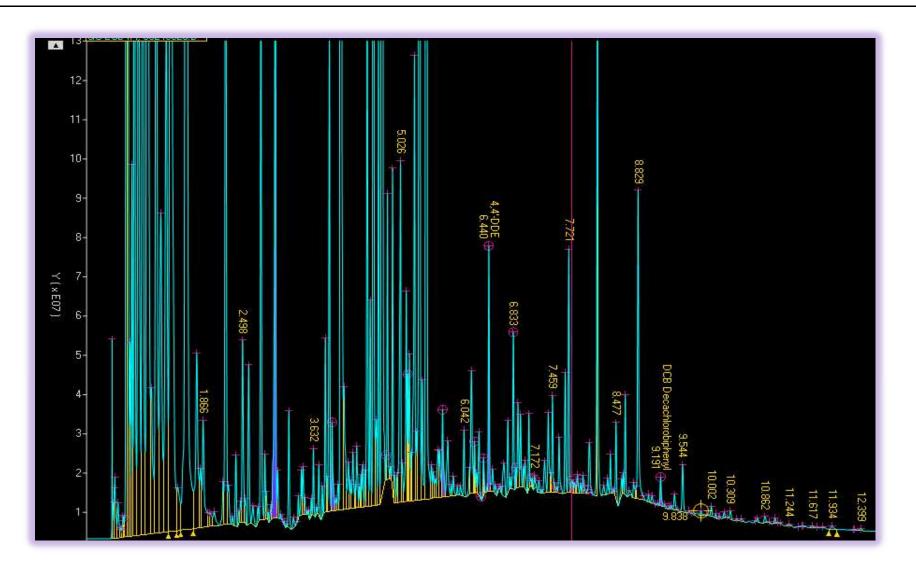
TestAmerica Application of Isotope Dilution

LCMSMS Advantages

Specificity/Selectivity - A target analyte's response is highly characteristic of its identity.

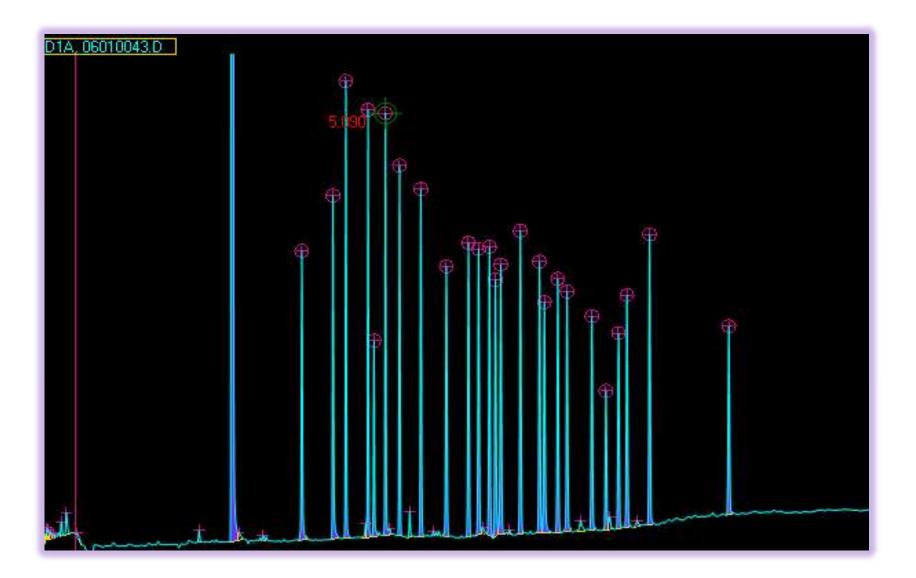
Sensitivity - Softer ionization than Electron Impact (EI) GCMS – allows for thermally labile analytes to be detected

Ruggedness – improved reproducibility for a wide variety of parameters and matrices and improved productivity

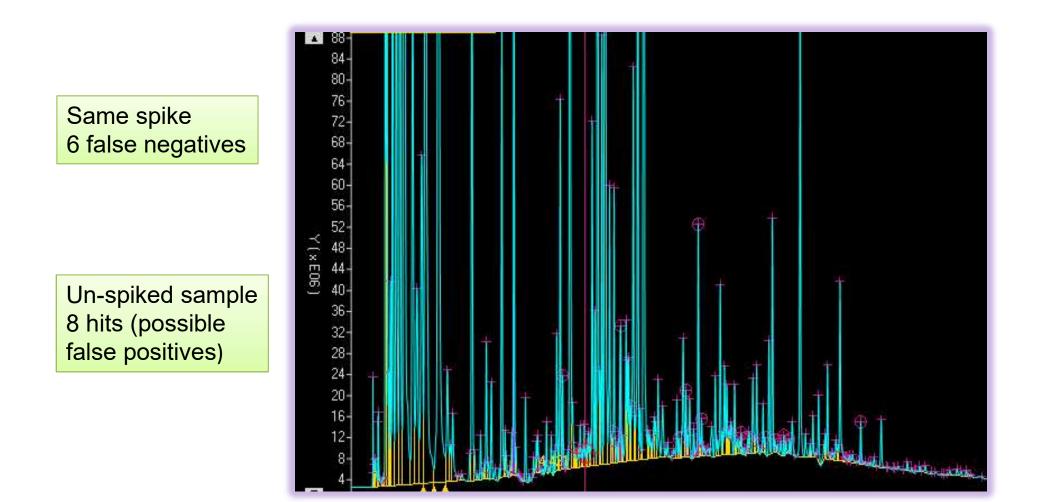

Analysis Procedures

Quality Control Elements

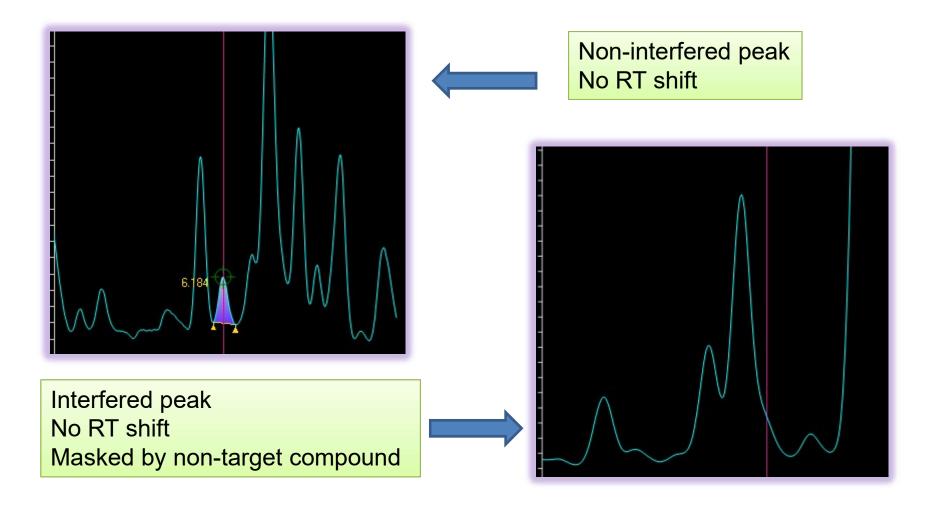
- MBs (3) Measures background lab artifacts
- LCS (3)– Measures target analyte recovery in simple matrix
- MS (6) Measures target analyte recovery in complex matrix
- Duplicates (4) –
 Measures reproducibility
 28 samples



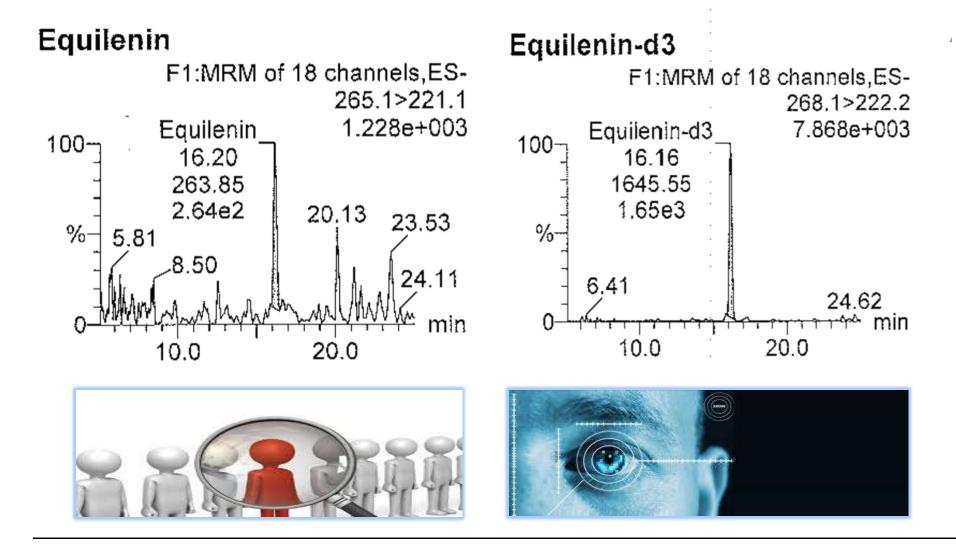
Chromatographic Complexity in Tissue

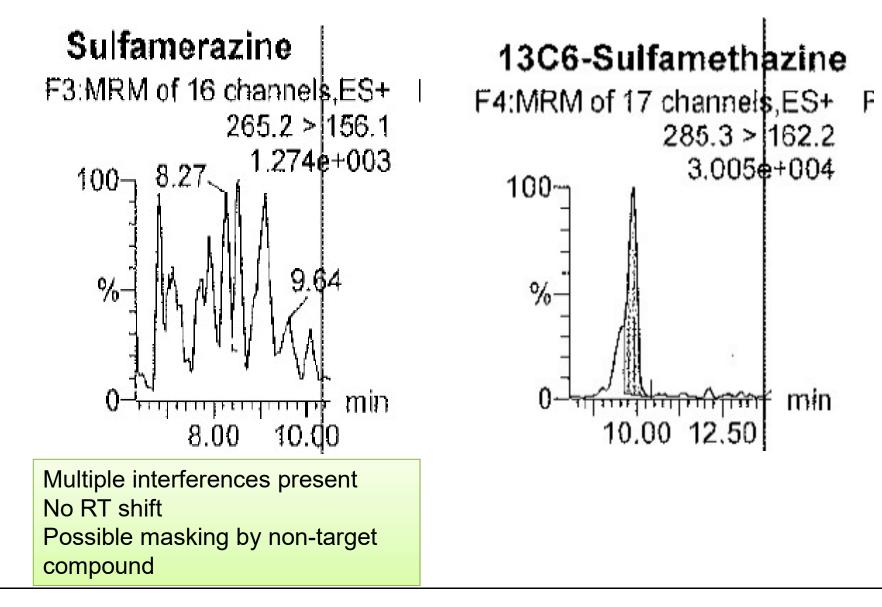


Chromatograph of Matrix Spike Mix



Same Spike in Tissue Sample




RT Shift or Obscuration?

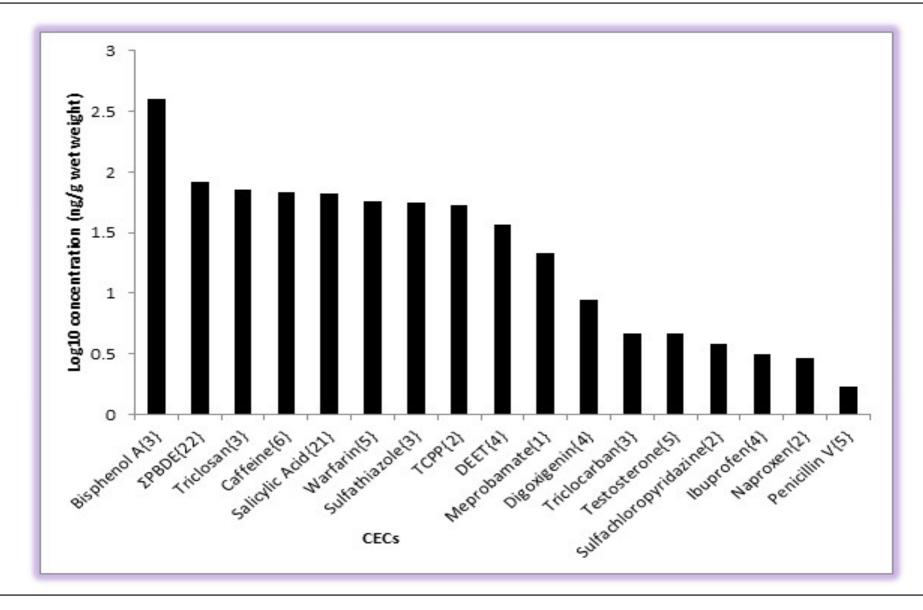
Use of Rigorous RT

- RT is critical/only ID element for non-selective detector
 - Narrowest possible effective RT window
 - TestAmerica recommends 0.01 RT min window nonselective detectors
- RT criteria frequently relaxed for selective detectors
 - 1694 specifies 0.25 min for LC/MS (25X wider)
 - TestAmerica used 0.02 min window for LC/MS in complex matrix

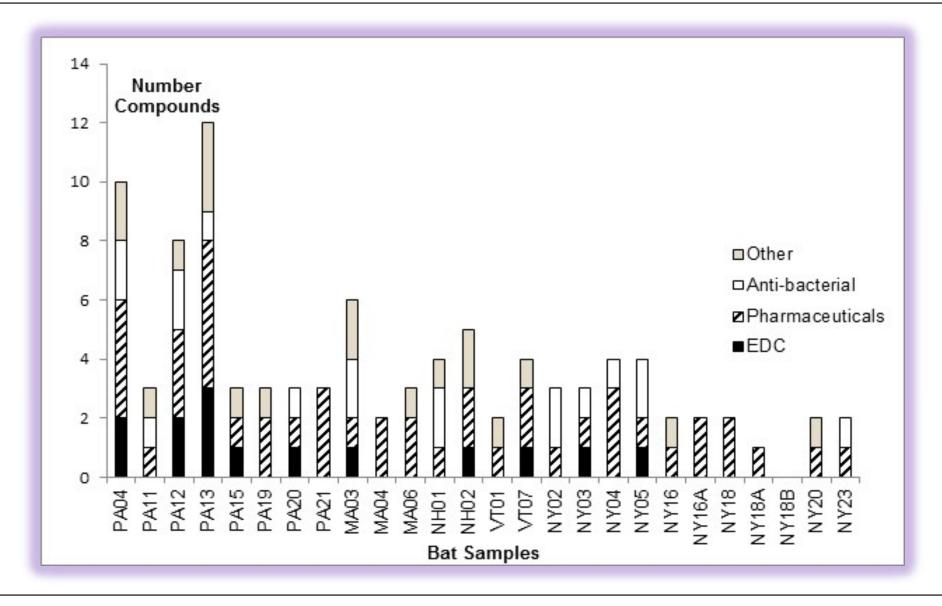
Use of QC Elements

- Standard
 Method blank
 Laboratory control spike
 Matrix spike
- Sample duplicateIDA/Surrogate recovery

	CCV	MB Batc	1 2052182	2 LCS Batch 2052182		PAWNS15		PAWNS15-MS		PAWNS15-MSD			PAWNS19		PAWNS19-DUP			
Analytes (Results in ng/g)	%Recovery	RL	Result	Spike Amount	Result	%Recovery	RL	Result	Spike Amount	Result	%Recovery	Spike amount	Result	%Recovery	RL	Result	RL	Result
Name																		
1694 - PPCP compounds																		
1,7-Dimethylxanthine	77.4	20.0	ND	1000	989.52	99	16.2	ND	810	1030	127.2	810	1756	216.9	17.1	ND	17.1	ND
Sulfadiazine	113.4	10.0	ND	500	572.42	114.5	8.10	ND	405	2493	615.7	405	1089	269	8.55	ND	8.55	ND
Cotinine	161.1	2.5	ND	50	59.12	118.2	2.02	ND	40.5	28.3	70	40.5	20.7	51.2	2.14	22.2	2.14	39.6
Hydrocodone	94.1	1.0	ND	50	55.49	111	0.81	ND	40.5	43.1	106.4	40.5	41.8	103.4	0.85	ND	0.85	ND
Caffeine	134.4	2.5	ND	50	42.22	84.4	2.02	61.7	40.5	45.5	0.0	40.5	50.1	0.0	2.14	2.22	2.14	ND
Sulfamerazine	134.9	5.0	ND	50	55.81	111.6	4.05	ND	40.5	108	265.8	40.5	46.7	115.2	4.27	5.88	4.27	ND
Trimethoprim	89.1	2.5	ND	50	34.59	69.2	2.02	ND	40.5	29.5	72.8	40.5	35.1	86.7	2.14	ND	2.14	ND
Sulfamethizole	99.6	5.0	ND	250	261.06	104.4	4.05	9.63	202	391	188.3	202	134	61.5	4.27	ND	4.27	ND
Ormetoprim (IA)	96.1	1.0	ND	50	51.98	104	0.81	ND	40.5	56.0	138.2	40.5	40.5	100.1	0.85	ND	0.85	ND
Sulfamethazine	90.5	5.0	ND	250	268.12	107.2	4.05	ND	202	153	75.7	202	180	88.8	4.27	ND	4.27	ND
Pentoxifylline	103.2	1.0	ND	50	50.46	100.9	0.81	ND	40.5	38.0	93.8	40.5	45.1	111.4	0.85	ND	0.85	ND
Meprobamate	88.2	1.0	ND	50	56.86	113.7	0.81	ND	40.5	28.8	71.1	40.5	40.5	99.9	0.85	ND	0.85	ND



Analyte Frequency



Average Analyte Concentrations

Analytical Retrospective

- Narrow the scope (fewer analytes)
- Add IDAs to 1:1 correspondence
- Optimize RT windows
- ➤ Add 2nd mass transitions
- Increase dwell time
- Multi-column review
- Optimize clean-up for selected analytes
- Balance extraction procedure to limit unintended interference
- Improved 'sampling'
 - Age/sex differentiation
 - Desiccated/decomposed vs harvested
 - Lipid normalization

- Bats are exposed to xenobiotics
- Bats are exposed to antibacterials
- Hypothesis still plausible
- Analytical procedure can be improved
- Further study is needed

- Eric Redman, <u>Eric.Redman@TestAmericainc.com</u> (916) 374-4342
- Anne Secord, U.S. Fish and Wildlife Service, 3817 Luker Road Cortland, New York 13045
- Karla Buechler, TestAmerica Laboratories Inc., 880 Riverside Parkway, West Sacramento CA, 95605

 Dr. Charlie Carter had a deep personal interest in the WNS phenomenon and was excited to cross paths in 2011 with Dr. Anne Secord from the Environmental Contaminants Division of the Fish and Wildlife Service This initial encounter led to collaborative discussion and development of a working hypothesis that was amenable to support from analytical chemistry. Charlie spent countless hours poring over the analytical results generated in this study and subsequent studies of insects. We know that his dedication to this effort has contributed to the scientific community's understanding of WNS.

In Honor of Dr. Charlie Carter

Thank you

Questions???