

Chemical Characterization of Indoor Dust by Comprehensive Target and Non-Target Screening Using GC- and LC-QTOF-MS/MS

NEMC 2016

<u>Christoph Moschet¹</u>, B. M. Lew¹, T. Anumol²,

and T. M. Young¹

cmoschet@ucdavis.edu

¹ University of California, Davis, ² Agilent Technologies, Wilmington, DE

Motivation – Why Indoor Dust?

- Human Exposure
 - Inhalation
 - Ingestion (toddlers)
- Human Health Impacts?

What is in Our Dust?

UCDAVIS UNIVERSITY OF CALIFORNIA

→Everything used in and around the homes = lots of "unknowns" Helpful Databases:

Chemical Inventory of Consumer Products (CPCP): "Walmart Database"

→ Goldsmith et al., Food Chem Toxicol, 2014. 65: p. 269-279

EPA DSS Tox Database (>100,000 chemicals) → www.epa.gov

Pictures: www.tierneycyanne.com, www.wiu.edu, www.agein.com, www.weiku.com, http://slsfree.net, http://healthyhints.com.au, http://unique-cleaning-tips.blogspot.com, www.bunnings.com.au, www.lawn-care-academy.com

<u>Goals:</u>

- determine known and unknown chemicals linked to different household sources
- compare chemical fingerprint of different household groups

<u>Approach</u>

- Combined <u>Target, Suspect and Non-Target Screening</u> using highresolution mass spectrometry
- Comprehensive analysis of 10-15 samples of each group of households
 - kids with <u>autism</u>
 - kids with <u>asthma</u>
 - <u>healthy</u> kids

Developed Analytical Method

Validation Target Method

- 77 targets GC-TOF-MS
 - e.g. BDEs, phthalates, PAHs, pyrethroids
- 56 targets LC-TOF-MS
 - e.g. parabens, PFCs, surfactants
- Quality Control:
 - GC-TOF-MS: 9 surrogates, 1 ISTD
 - LC-TOF-MS: 1 surrogate, 9 ISTDs
 - Method-Blanks ("Min-U-Sil"), triplicate per sequence
 - NIST SRM 2585, triplicate per sequence → 11 out of 14 compounds within 25% accuracy
 - Spike recovery experiments, triplicate per sequence
 - Precision of triplicates → 95% of compounds with <20% coefficient of variation

Absolute Recovery (blue: GC-MS, orange: LC-MS)

RSITY OF CALIFOR

Method Detection Limits of Targets		
MDL	GC-QTOF-	LC-QTOF-
(ng/g dust)	MS	MS
>0.1 - 1	1	6
>1 - 10	23	30
>10 - 100	36	10
>100 - 1000	12	10
>1000	5	0

Target Results: # Detected Compounds UNIVERSITY OF CALIFORNIA N= 18 samples 30 Detected in all Detected in some 25 □ Never detected compounds 20 15 10 # 5 0 Phenols Plasticizers Parabens Insecticides **Other Flame** PFCs BDEs Various Herbicides/ PAHs Skin Oils Retardants Fungicides

Suspect Screening

- Example NORMAN Collaborative Trial

NORMAN

Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

- NORMAN: European platform for information exchange and harmonization of analysis of emerging pollutants (<u>www.norman-network.net</u>)
- Non-Target Dust Collaborative Trial:
 - One dust sample sent out in January 2016 to roughly 30 research institutes (mainly Europe)
 - Extraction, analysis by LC-TOF-MS and GC-TOF-MS, results reported in June 2016 (<u>http://www.normandata.eu/?q=node/27</u>)

Suspect Screening: LC-QTOF-MS

Total Ion Chromatogram of NORMAN dust sample (pos)

<u>B) Find by Formula (MassHunter Qual) with</u> <u>Fragment Confirmation</u>

- Example: Tris-butoxyethyl-phosphate
 - peak found: m/z 399.2506 @ RT 14.5 min
 - isotope pattern match (score 98) for formula C₁₈H₃₉O₇P

A) Use of Agilent MS/MS libraries:

- Forensic Tox PCDL (8000 compounds)
- Pesticide PCDL (1700 compounds)
- NIST PCDL (5600 compounds)

Suspect Screening: LC-QTOF-MS

• Example: Tris-butoxyethyl-phosphate

Library spectra (CE 20):

* Schymanski et al. (2014) Environ Sci Technol 48(4): 2097-2098.

Non-Target Screening: LC-QTOF-MS

- 1. Recursive Feature Extraction (Agilent Profinder)
- 2. Blank Subtraction (Agilent MPP software) \rightarrow 2300 true features remaining (pos and neg)
- 3. Re-run sample in targeted MS/MS mode \rightarrow most intense features in inclusion list
- 4. Compare MS/MS spectra with in-silico fragmentation software, e.g. <u>Agilent MSC</u> or MetFrag (level 3 confirmation*) * Schymanski et al. (2014) <u>Environ Sci Technol</u> 48(4): 2097-2098.

Example: Unknown Feature

Non-Target Screening: GC-TOF-MS

 A) Agilent MassHunter Qual: Find by Integration (background subtraction)
B) NIST library search

C) Comparison of retention indexes (RI)

ightarrow to get the big peaks out of TIC

A) Agilent Unknown Analysis → Spectral Deconvolution, Blank Subtraction
B+C) NIST library search + RI comparison

Example: Cannabinol

- Library fragments match score: 94.5
- RI NIST: 2582, RI measured: 2591

Summary NORMAN dust sample

Non-Target Chemical Fingerprinting

- Goal: find features that are different between household groups
- Approach: statistical evaluation of non-target features (Agilent MPP)

UNIVERSITY OF CALIFORNIA

- developed analytical method fast and reliable to detect hundreds of targets in household dust
- LC-QTOF-MS "All-Ions" workflow and spectral libraries very helpful for efficient identification of suspects
- non-target feature extraction and identification of features is labor intensive → prioritization strategies needed (e.g. cases vs. control)
- large number of contaminants in dust \rightarrow potential health concern
- study will show if a linkage between chemical fingerprint and health output of children can be done

Funding:

- U.S. Environmental Protection Agency (EPA-G2013-STAR-K1)
- UC Davis Superfund Research Center, National Institutes of Health, NIEHS award (P42ES004699)

Thanks:

- Agilent Technologies Inc. for technical assistance in instrument setup and applications, especially Tarun Anumol, Phil Wylie and Diana Wong
- Prof. Deborah Bennett (PI, together with Prof. Thomas Young) and Dr. Hyeong-Moo Shin (co-PI), UC Davis Department of Public Health, for study design and development, Rebecca Moran for sample collection

Target Results: PCA of Compounds

- PCA shows grouping of household sources in 18 household samples
- more samples needed to strengthen this hypothesis

Non-Target Screening: LC-QTOF-MS

Example: ethylene-glycols

Homologues Series:

.

- polyethylene-glycols (PEGs)
- alcohol ethoxylates (AEOs)
- linear alkyl benzene sulfonates (LAS)
- alcohol ethoxysulfates (AES)

