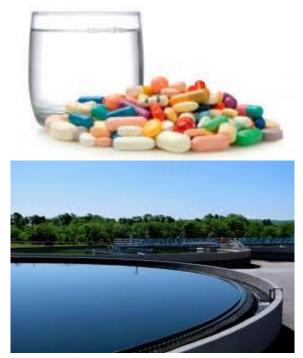


Simultaneous Quantitative and Qualitative Identification of Transformation Products of Triamcinolone Acetonide by Ozonation Using Liquid Chromatography (LC) Hyphenated with Quadrupole Time-of-Flight Mass Spectrometry (Q-TOF-MS)

Minkyu Park, Ai Jia and Shane A. Snyder

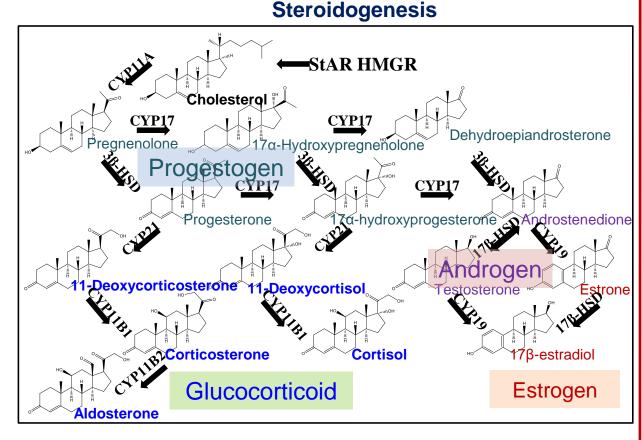
Department of Civil and Environmental Engineering

University of Arizona


Minkyu Park: minkyupark@email.arizona.edu (speaker) Shane A. Snyder: snyder2@email.arizona.edu (corresponding author)

TOrCs in wastewater

Ubiquity of TOrCs in wastewater


- Trace organic contaminants (TOrCs) occur in wastewater ubiquitously.
- Conventional WWTP is not efficacious for the attenuation of TOrCs.
- Pharmaceuticals
- Personal care products
- Steroid hormones
- Industrial chemicals

Glucocorticoids (GCs) are one class of steroid hormones in vertebrates

- Glucocorticoids (GCs) affect energy metabolism, immune system response, and stress adaption in vertebrates.
- GCs show effects mainly by binding to the nuclear glucocorticoid receptor (GR) and subsequent regulation of related gene expression.

GCs are top prescribed medicines

Amount prescribed in UK (2006)

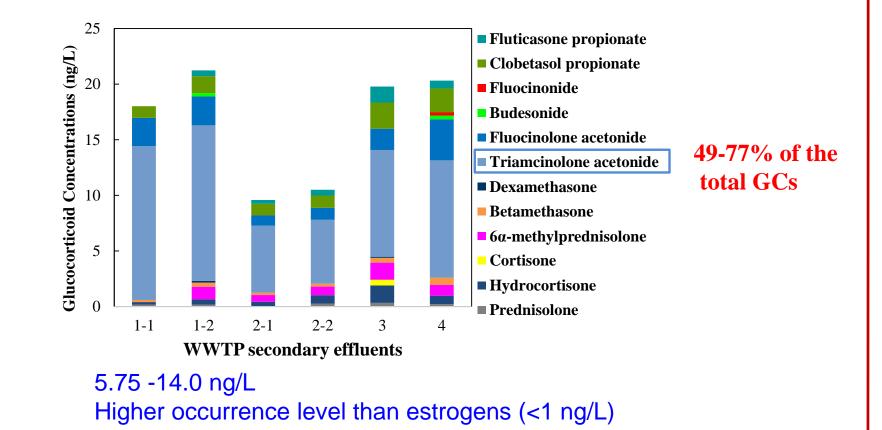
Class	Prescribed (kg)	
Estrogens	488.79	9 times
Androgens	306.62	14 times
Progestogens	1704.65	3 times
Glucocorticoids	4367.72	

Human and Ecological Risk Assessment: An International Journal Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/bher20

Pharmaceuticals in the Aquatic Environment: Steroids and Anti-Steroids as High Priorities for Research

Tamsin J. Runnalls ^a , Luigi Margiotta-Casaluci ^a , Subramaniam Kugathas ^a & John P. Sumpter ^a ^a Institute for the Environment , Brunel University , Uxbridge, Middlesex, UK Published online: 15 Dec 2010.


Five medicines with GCs were listed in top 100 most prescribed drugs in USA (2013)

Name	Brand	by sales	by units
Fluticasone	Advair Diskus	6	6
Propionate	Flovent HFA	52	32
Budesonide	Uceris	57	1
	Symbicort	30	26
Mometasone	Nasonex	46	24

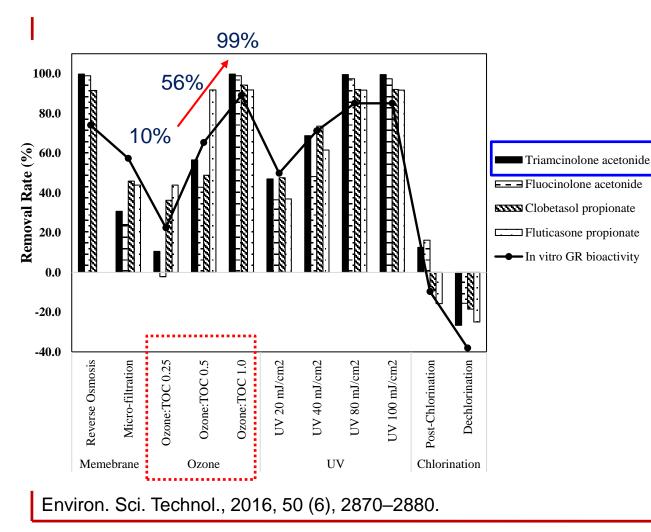
Source: drug.com (database: IMS)

Glucocorticoids in WWTP effluents

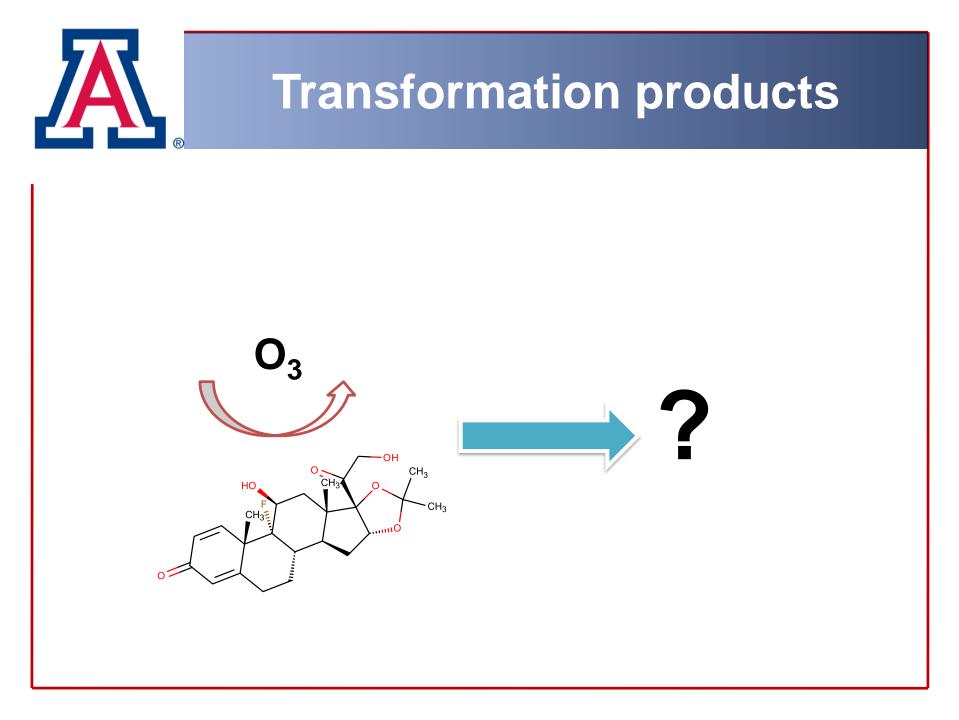
Environ. Sci. Technol., 2016, 50 (6), 2870–2880.

Relative potency of glucocorticoids

 EC_{50} **Dose-response curve** GCs REP Т (nM) 115 Prednisone Prednisone >500 < 0.004 ----- Cortisone Cortisone >500 < 0.004 100 17.7 Prednisolone 0.101 0.152 Triamcinolone 11.8 85 Fludrocortisone 9.67 0.185 acetate Hydrocortisone 6.81 0.264 70 ----- Methylprednisolone % DEX Max 6α------ Betamethasone methylprednisol 6.79 0.264 55 one - +- Dexamethasone 0.634 **Betamethasone** 2.83 Triamcinolone acetonide Fluocinonide 1.89 0.948 40 Flumethasone **Dexamethasone** 1.79 1.000 Budesonide Triamcinolone 25 0.79 2.265 acetonide 5.032 Flumethasone 0.36 10 **Budesonide** 0.26 6.895 ----- Fluticasone propionate Fluocinolone GCs mixed standard 0.24 7.398 acetonide -5 1.E-10 1.E-09 Clobetasol 1.E-13 1.E-12 1.E-11 1.E-08 1.E-07 1.E-06 0.048 37.04 propionate **Concentration** (M) Fluticasone 0.025 70.88 propionate GCs mixed Most synthetic GCs have much higher 0.005 329 standard activity than natural GCs Environ. Sci. Technol., 2016, 50 (6), 2870–2880.


An increasing release of certain GCs is expected

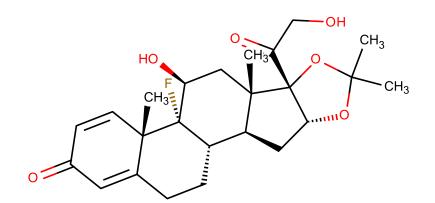
Triamcinolone acetonide (TA) and fluticasone propionate (FP) are approved as overthe-counter (OTC) drugs by US FDA since 2014.


Attenuation of several GCs via advanced water treatment processes

RO and UV were efficacious for GC attenuation

•

- Chlorination cannot remove GCs
- The attenuation of GCs by ozonation is dependent on the applied ozone dose



- To identify transformation products of GCs by ozone oxidation quantitatively and qualitatively.
- To provide comprehensive data analysis procedure for identification of unknown transformation compounds

Triamcinolone acetonide (TA)

Formula: $C_{24}H_{31}FO_6$ Monoisotopic weight: 434.2104 Log K_{ow} : 2.53

Ozonation experiment

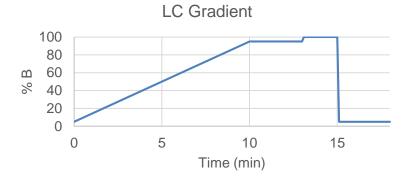
Generation of ozone stock solution

Ozone concentrations: 0, 0.8, 2, 4 & 8 mg/L

4 mM t-BuOH

< Xylem Wedeco 8HC modular >

Work flow


Acquisition	Accurate mass analysis (Auto MS/MS)	- Agilent UHPLC QTOF-MS
Data analysis	Profinder	- Alignment - Molecular Feature Extraction (MFE)
	Mass Profiler Professional (MPP)	 Profiling (Statistical analysis to reduce possibility of false positive identification)
Identification	MassHunter Qualitative Analysis	- Molecular Formula Generation (MFG)
Estimation	Structure Estimation	- Based on knowledge of chemistry, guess structures of transformation products
Confirmation	Molecular Structure Correlator (MSC)	Fragmentation pattern analysis

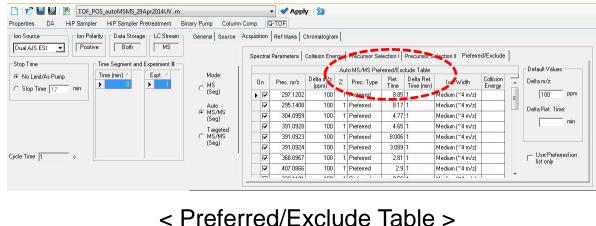
Instrumentation

LC run parameters

Column	Agilent Eclipse C18, 2.1 × 50 mm, 1.8 µm
Column Temp.	30 °C
Injection Volume	40 µL
Mobile Phase	H ₂ O-0.1% acetic acid (A) Acetonitrile (B)

Agilent UHPLC-QTOF-MS (6540)

Instrumentation


MS run parameters

Source	Dual AJS ESI-negative
Reference masses	112.9896, 1033.9881
MS/MS scan mode	Auto MS/MS
Collision energy (V)	10, 20, 40
Fragmentor (V)	110
Gas temperature (°C)	250
Sheath Gas Temperature (°C)	300
Sheath Gas Flow (L/min)	11
MS Min Range (m/z)	50
MS Max Range (m/z)	1100
MS Scan Rate (spectra/sec)	2
MS/MS Scan Rate (spectra/sec)	5

Auto MS/MS

- Automatic MS/MS triggers MS/MS mode from MS scan mode if ions are detected above a threshold abundance (20000 counts/spectrum used in this study)
- Advantage
 - Efficient because MS scan and MS/MS can be done in one run.

234

215

102

54

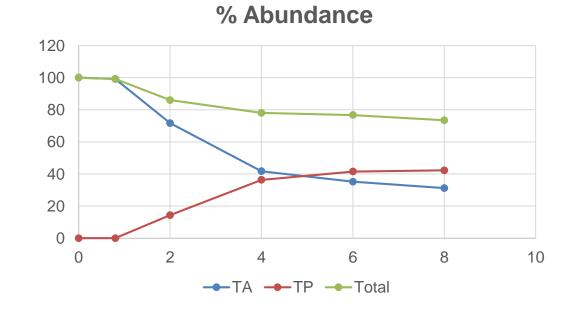
9

Mass Profiler Professional

Number of features identified after alignment of data.

Number of features after **frequency filtering** with 2/3 of each group of samples

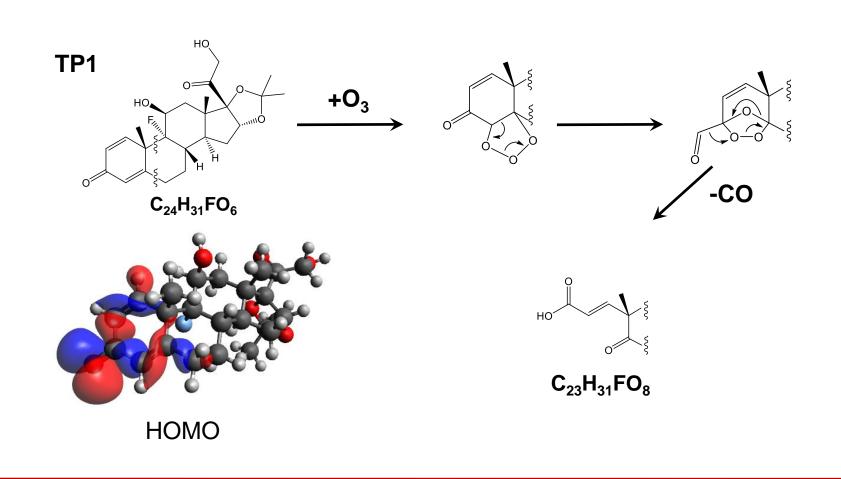
- ANOVA at 95% confidence level, Bonferroni test and Tukey test
- Number of features that are statistically significant


Fold change (4 fold)

- Number of features that have ion counts that changed by at least a factor of 4 between PreO₃ and PostO₃
- Number of features that have MFG score > 80

Profiling results

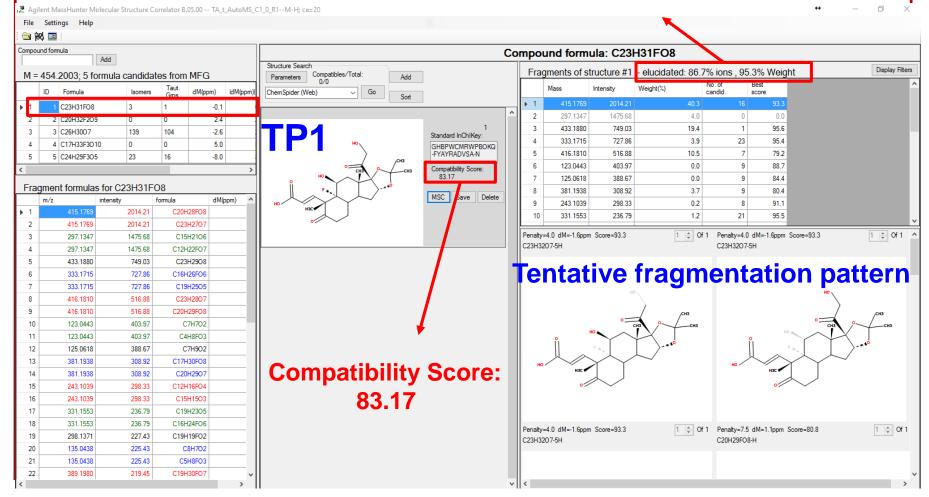
 ~75% of transformation products by abundance can be explained by the statistical profiling method.


A

Profiling results

List of TPs

	Formula	Score	Mass	Diff (ppm)	RT
TP1	C ₂₃ H ₃₁ F O ₈	95.7	454.2002	0.23	5.176
TP2	$C_{23} H_{29} F O_8$	92.54	452.1856	-2.1	4.709
TP3	$C_{19} H_{34} O_{12}$	91.69	454.205	0.05	5.176
TP4	$C_{27} H_{30} O_7$	97.16	466.1984	1.58	3.98
TP5	$C_{20} H_{34} F O_{14}$	87.54	517.1957	-4.74	4.374
TP6	$C_{27} H_{42} O_{15}$	93.34	606.2506	2.99	3.98
TP7	$C_{21} H_{36} F O_{15}$	83.93	547.2063	-4.56	3.975
TP8	C ₃₀ H ₂₉ F O	81.9	424.2194	1.96	4.696
TP9	$C_{29} H_{36} O_{10}$	85.19	544.2296	2.27	4.782


Fragmentation pattern of TP1

Cpd 84: 4.349: -ESI Product Ion (rt: 4.347 min) Frag=110.0V CID@10.0 (453.1911[z=1] -> **) TA_AutoM x10⁴ 453.1934 0.5-415,1764 297.1341 101.0244 175.0757 590.0013 Cpd 84: 4.349: -ESI Product Ion (rt: 4.349 min) Frag=110.0V CID@20.0 (453.1911[z=1] -> **) TA_AutoM x10³ 453.1923 4 297.1348 123.0439 209 0823 2 0 Cpd 84: 4.349: -ESI Product Ion (rt: 4.351 min) Frag=110.0V CID@40.0 (453.1911[z=1] -> **) TA_AutoM x10³ 123.0455 1 333,1716 217,1219 415,1752 raht fillen hinscher Berechtlichen Bereiten im dem sie eine 0-100 400 450 500 550 600 (Counts vs. Mass-to-Charge (m/z) 650 700 50 150 200 250 300 350

Elucidated: 86.7% ions, 95.3% weights

Conclusion

- Transformation products (TPs) of triamcinolone acetonide (TA) by ozone oxidation was identified quantitatively and qualitatively using Auto MS/MS.
- With a single run, both quantitative (abundance) and qualitative (formula and fragmentation pattern) information could be obtained via Auto MS/MS.
- A statistical profiling tool efficiently screened insignificant TPs.
- Molecular structure correlator (MSC) can be a useful tool to identify fragmentation pattern.

Acknowledgement

- Snyder Research group (University of Arizona)
 Dr. Shane A. Snyder
- The Metropolitan Water District of Southern California
 - Dr. Ai Jia

Questions???