BUCHI Corporation

Solutions Guide to Sample Prep – Extraction to Cleanup/Water Removal to Concentration to Final Volume

Overview

Concentration of Samples Complying to US EPA 8270

Parallel evaporation technology for high solvent and analyte recoveries

Ooff Roid, "Daniel M. Morer, "Grog Lewrence" ISUO-II Corporator, 19 Lukens Dirke, New Gasta, DE 1972C, United States 8 Thospillet monoments I somestones, 987 - 34 Mindle Lumpike, Manchester, 01 06040, United States

Introduction

Sample concentration and analytic findings for US LPA method SW-846-8270 to determine the concentration of semivolatile organic compounds (SVOC) in extracts from solid waste matrices, soils, and water samples are highlighted.

During the concentration step traditionally performed by Kuderna-Danish (KD) or nitrogen blowdown devices, organic solvent fumes could escape into the environment. These solvent vapors are harmful to exposed operators and persist in the atmosphere.

Only recently, commercial laboratories were enforced to control their solvent emissions, non-compliance led to high monetary fines.

Here, thanks to the BUCHI Syncore® Analyst more than 95 % of the solvent ovaporated during concentration is recovered and high analyte recovery rates reported.

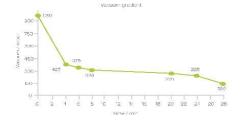
Experimental Set-up

Cooled appendix technology

Due to the cooled appendix technology the sample is automatically concentrated to the predefined volume of either 0.3, 1 or 3 mL ($A\rightarrow B$). The appendix is cooled by the recirculating chiller. After concentration the sample is transferred to the sample vial ($O\rightarrow D$).

Flushback effect

The Hushback module partially condenses the solvent vapor at the top of the sample vessel generating a continuous rinsing along the glass wall. Adsorption of analytes at the glass wall is avoided and high analyte recovery rates obtained.


Parallel concentration process

Application specific on-site support is offered to effectively prepare your environmental sample.

An environmental benign sample concentration process is performed by applying the follwing parameters and a programmed vacuum gradient.

Solvent	DOM
Starting Volume	40 mL
Fina Volume	1mL
Heating plate	65 °C
Covertemo.	55 °C
Coaling terrio:	5 °G
Orbitel movement	200 rom

Twelve samples are concentrated in parallel using the Syncore® Analyst R-12 in only 28 minutes, i.e., 2.3 minutes per sample. The solvent, dichloromethane (DCM), is recovered at a 95 % efficiency and no nitrogen used.

Analytical results

Spiked (50/75 ng) and concentrated laboratory control samples were analyzed by GC/MS for all compounds mentioned in US LPA SW 846-8270.

Analytical Metricid	CAS Number Equivalent	Parameter Name Som spille Compounds	Solke Leve (og)		Percent Recovery & LOS 52
SW8270	367-12-4	% 2-Huorophenol	75	79	88
SW8270	9890/-43-9	% Teroheny-c14	50	107	11/
SW8270	120-82-1	1,2,7-Trichlorobenzena	50	86	92
SW8270	541-73-1	I,3-Dien probenzene	50	8b	90
SW8270	86 08 2	2,4,6 Trich orophene!	50	103	108
5W8270	5'-28-5	2,4-Dinitropheno	50	99	98
5W8270	91-58-7	2-Chloronaphthalene	50	95	98
SW8270	95-48-7	2-Methylphenol (o-cresol)	50	69	87
SW8270	91-94-1	3,3'-D chlorobenzid ne	50	182*	1871
SW8270	i534-i52-1	4,6-Dinitra-2-methy phenal	50	108	107
SW8270	108-77-8	4-Chloroaniline	bO:	99	96
SW8270	100 02 7	4 Nitrophenol	50	114	105
6W8270	98-86-2	Acctophenene	50	99	99
SW8270	56-55-3	Benz(a)anthresone	50	98	99
SW6270	205-99-2	Benzo(o)fluoranthene	50	104	108
SW8270	85-68-7	Benzyl butyl phthalate	50	97	100
SW8270	39638-32-9	Bis/2-on orbisopropyl)ether	50	99	91
SW8270	218-01-9	Chrysene	50	100	101
SW8270	134-66-2	Diothyl pathelate	50	99	98
SW8270	117.84.0	Di n octylphthalate	5C	°C4	105
SW8270	118-74-1	Hexachlorepenzene	50	106	102
5W8270	67-72-1	Hexachloroethane	50	87	89
SW8270	91-20-5	Naohthalene	50	91	93
SW8270	621-04-7	N-Nitrosodi-r-propylamine	50	95	91
SW8270	87-86-5	Periteon crophenic	50	103	111
SW8270	129-(X)-0	Pyrene	50	101	106

* The elevated % recovery is related to the instrument,

For complet list, please visit http://www.buon.com/epa_8270

Conclusion

- I ligh solvent recovery > 95 %
- High analyte recovery for SVOC
- Excellent reproducibility
- · Compliance with waste minimization and pollution prevention
- Automation and intensification > cost reduction
- Also applicable for US EPA 82/0/625 SVOC, 8081A.B/808 organochlorino posticidos, 8082/098 polychlorinated biphenyls, and 8015 nonhalogenated organics

http://www.buchi.com/eps_8270 Quellty in your hands

Physics of good Chemistry

Effects of Temperature, Pressure and Agitation

- 4 Temperature zones
- Positive and negative pressure
- Vortex motion
- Dual Condensation
- Solvent resistant design

Capabilities of the Syncore®

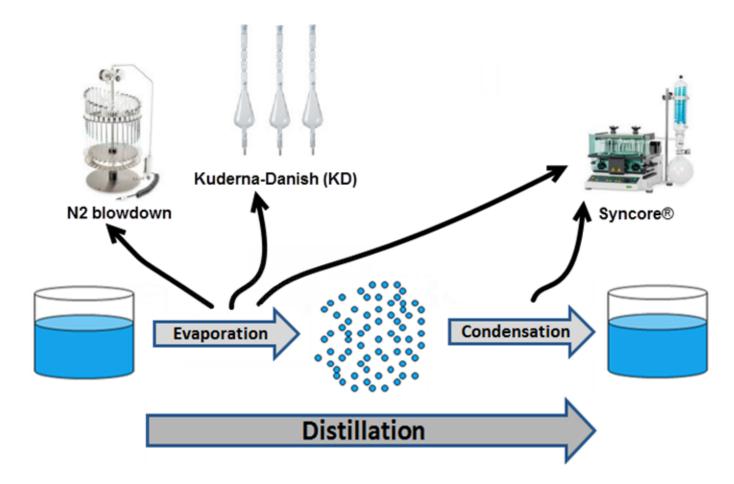
One platform multiple functions

 Complete solvent removal or predefined residual volume

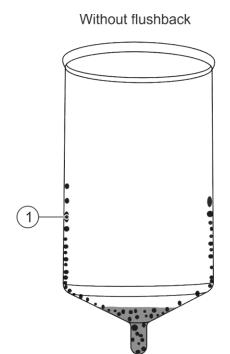
Wide range of racks

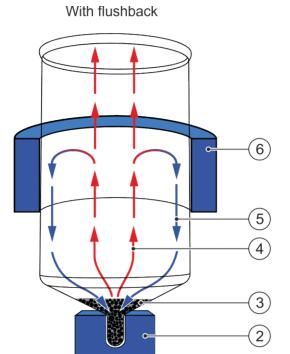
 Working volumes from 0.5– 500ml

Wide range of applications

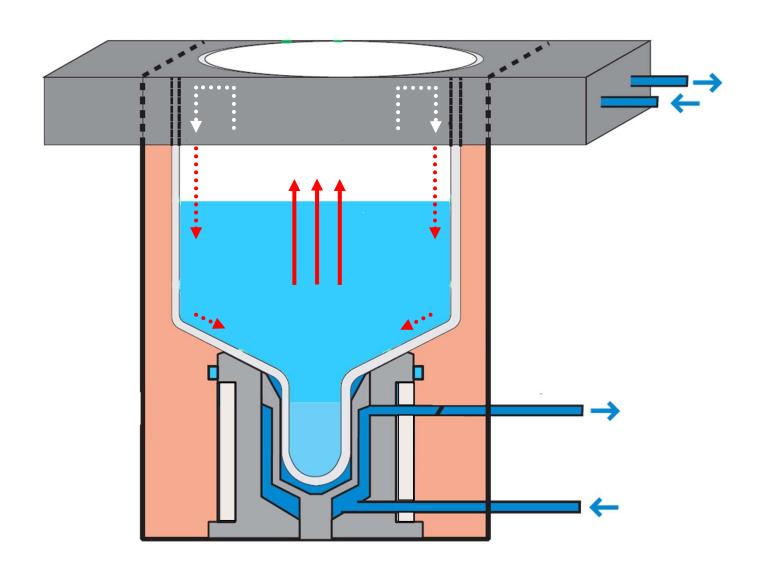

- Environmental
- Food & Beverage
- Feed
- Pharmaceutical & Nutraceutical

Evaporation vs. distillation

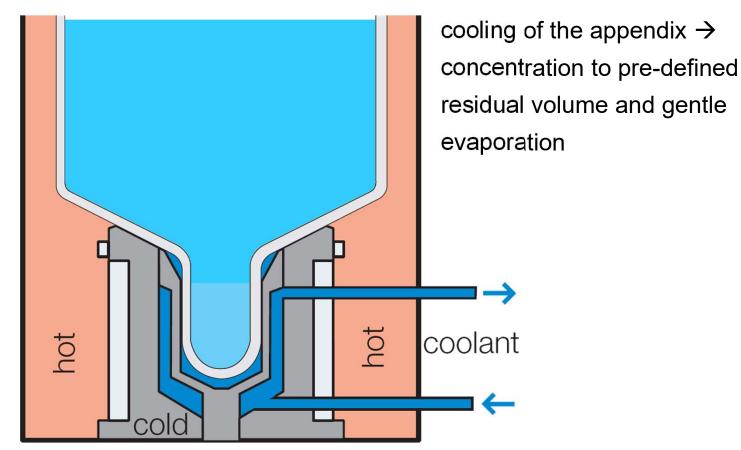

Parallel evaporation



Enhance analyte recoveries


- 1 Analyte sticks to the wall
- 2 Cooling
- 3 Concentrated analyte

- 4 Evaporation
- 5 Flushback effect
- 6 Cooling


Flushback effect – increased recoveries

Concentration to pre-defined residual volumes

Analyte recovery

Which one would you choose to sample for analysis?

Utilization of a vacuum source

PV = nRT

Why evaporate under vacuum?

- Boiling point depends strongly on pressure
- Lower pressure → lower boiling point

Advantages:

- Protect thermo-sensitive samples
- Speed up evaporation
- Eliminate N₂ usage

Solvent Recovery

Dual Condensation

- Primary solvent recovery (65-70%)
- Post-pump recovery (25-30%)

Advantage:

- Maximizes solvent recovery
- Safer working environment
- Clean air & clean water

Importance of solvent recovery

"Emissions Reduction Program"

US EPA Method 3500C and other concentration methods

 Summary of methods; section 2.2 → "Solvent recovery apparatus is recommended for use in evaporative concentrators. EPA recommends that incorporation type of reclamation system as a method to implement an emissions reduction program."

Source:

http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3500c.pdf

Importance of solvent recovery

Global initiative

New ozone-destroying gases on the rise

 The gases in question are known as "very shortlived substances" (VSLS) such as dichloromethane, which is used in a variety of industrial processes."

Source:

http://www.usatoday.com/story/weather/2015/02/16/ozone-layer-depletion/23494063/

How to profit from recovered solvent

Public perception

ESC Laboratories

- Promoting "environmental stewardship"
- Increase customer base due to environmental friendly approach

ABOUT US

CAREERS

SERVICES

RESOURCES

ESC's Commitment to Environmental Stewardship

The staff-owners of ESC Lab Sciences are committed to environmental stewardship. Successfully accomplishing responsible utilization of resources involved more than putting up signs and circulating memos. Action and perseverance on the part of management and staff who consider the environmental, or the E in ESC, to be an obligation led to responsible conservation, recycling and reuse becoming more and more a way of life on our campus. ESC is recognized nationally as a leader among testing laboratories in the practice of green initiatives.

Solvent Recovery

Buchi Syncore reduces solvent emission by reclaiming over 85% of the evaporated solvent released by the concentration process. The Buchi Syncore process lets ESC recycle dichloromethane, hexane, and acetone for use in manufacturing. Our goal is to improve solvent distillation and recovery process in order to produce solvents suitable for laboratory use.

85%+ of extraction solvent recovered! FY2009-10

Importance of solvent recovery

Environmental/ health aspect

No air pollution by organic or chlorinated solvents

- Chlorinated solvents are (potential) carcinogens
- Safe laboratory
- Clean atmosphere

Sustainable

Latest innovation

Luer connection through lid

- Solvent exchange
 - Pest/PCB/Herb
- Sample/Solvent addition
 - Large volumes of extracts
- Water removal
 - Hydrophobic membrane

Summary

- Data quality
 - No gas blowdown (Nitrogen) necessary, minimizes stripping of low boiling point analytes
 - Vortex action brings analytes to the appendix
 - Vacuum rapidly removes solvent
 - Solvent addition and solvent exchange simplified
- Solvent recovery
 - Safety of lab personnel
 - Environmental responsibility

Analytical Summary - 8270

Concentration of Samples Complying to US EPA 8270

Parallel evaporation technology for high solvent and analyte recoveries

Uerf Reid. *Denid M. Meter, *Breg Lewrence
*BUO-II Corporator, 19 Lukens Dirke, Nave Gasta, DE 19720, United States
*Buo-III Corporatore, 19 Lukens Dirke, Nave Gasta, DE 19720, United States
*Breenide Teachments I Faronstones, 987 - 34 Minde Lumpike, Manchester, CLO8040, Joliec States

Introduction

Sample concentration and analytic findings for US LPA method SW-846-8270 to determine the concentration of semivolatile organic compounds (SVOC) in extracts from solid waste matrices, soils, and water samples are highlighted.

During the concentration step traditionally performed by Kuderna-Danish (KD) or nitrogen blowdown devices, organic solvent furnes could escape into the environment. These solvent vapors are harmful to exposed operators and persist in the atmosphere.

Only recently, commercial laboratories were enforced to control their solvent emissions, non-compliance led to high monetary fines.

Here, thanks to the BUCHI Syncore® Analyst more than 95 % of the solvent evaporated during concentration is recovered and high analyte recovery rates reported.

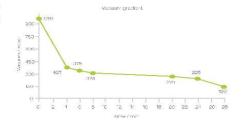
Experimental Set-up

Cooled appendix technology

Due to the cooled appendix technology the sample is automatically concentrated to the predefined volume of either O.3, 1 or 3 mL ($A \rightarrow B$). The appendix is cooled by the recirculating chiller. After concentration the sample is transferred to the sample vial ($C \rightarrow D$).

Flushback effect

The Hushback module partially condenses the solvent vapor at the top of the sample vessel generating a continuous rinsing along the glass wall. Adsorption of analytes at the glass wall is avoided and high analyte recovery rates obtained.


Parallel concentration process

Application specific on-site support is offered to effectively prepare your environmental sample.

An environmental benign sample concentration process is performed by applying the follwing parameters and a programmed vacuum gradient.

Solvant	DOM
Starting Volume	40 mL
Fina Volume	1 mL
Heating plate	6510
Covertemo.	55 °C
Coaling terrini	5 °G
Orbitel movement	200 rom

Twelve samples are concentrated in parallel using the Syncore® Analyst R-12 in only 28 minutes, i.e., 2.3 minutes per sample. The solvent, dichloromethane (DCM), is recovered at a 95 % efficiency and no nitrogen used.

Analytical results

Spiked (50/75 ng) and concentrated laboratory control samples were analyzed by GC/MS for all compounds mentioned in US EPA SW 846-8270.

Analytical Melroid	CAS Number Equivalent	Parameter Name Sum syste Compounds	Solke Leve (og)		Percent Recovery & LOS 52
SW8270	367-12-4	% 2-Huorophenol	75	79	88
SW8270	88907-43-9	% Teroheny -c14	50	107	11/
SW8270	120-82-1	1,2,7-Trichlorobenzana	50	86	92
SW8270	541-73-1	I,3-Dien probenzene	50	8b	90
5W8270	88 C6 2	2,4,6 Trich orophene!	50	103	106
SW8270	51-28-5	2,4-Dinitropheno	50	99	98
5W8270	91-58-7	2-Chloronaphthalene	50	95	98
SW8270	95-48-7	2-Methylphenol (o-cresol)	50	69	87
SW8270	91-94-1	3,3'-D chlorobenzid ne	50	182*	1871
SW8270	p34-p2-1	4,6-Dinitro-2-methy phenol	50	106	107
SW8270	108-77-8	4-Chloroaniline	50	99	96
SW8270	100 02 7	4 Nitrophenol	50	114	105
5W8270	96-86-2	Acctophenene	50	99	99
SW8270	56-55-3	Benz(a)anthresone	50	98	99
SW6270	205-99-2	Benzo(o)fluoranthene	50	104	108
SW8270	85-68-7	Benzyl butyl phthalate	50	97	100
SW8270	39638-32-9	Bis/2-on oroisopropybether	50	99	91
SW8270	218-07-9	Chrysene	50	100	101
SW8270	134-66-2	Diothyl pathelate	50	88	98
SW8270	117.84.0	Di n octylphthalate	5C	°C4	105
SW8270	118-74-1	Hexachlorepenzene	50	108	102
5W8270	67-72-1	Hexachloroethane	50	87	89
SW8270	91-20-5	Naohthalene	50	91	93
SW8270	621-04-7	N-Nitrosodi-r-propylamine	50	95	91
SW8270	87-86-5	Pentach propheno	50	103	111
SW8270	129-(X)-0	Pyrene	50	107	105

* The elevated % recovery is related to the instrument.

For complet list, please visit http://www.buon.com/epa_8270

Conclusion

- \bullet High solvent recovery > 95 %
- · High analyte recovery for SVOC
- Excellent reproducibility
- · Compliance with waste minimization and pollution prevention
- Automation and intensification > cost reduction
- Also applicable for US EPA 82/0/625 SVOC, 8081A.B/808 organochlorino posticides, 8082/608 polychlorinated biphonyls, and 8015 nonhalogeneted organics

http://www.buchi.com/eps_8270 Quelity in your hands

Quality in your hands