

A High Throughput, Low Cost and Green Approach to Automated Extraction, Clean Up, and Concentration for Same Day POPs Analysis

Philip Bassignani Fluid Management Systems Watertown MA USA

Introduction

- Stockholm Convention on Persistent Organics Pollutants 2001.
- •Compounds of interest: polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs), and furans (PCDFs).
- Known toxicity.
- Strict environmental regulations in force in most countries.

Health Effects

- Endocrine disruptors.
- Immune system.
- Nervous system.
- Reproductive functions.
- Carcinogenic.
- Chloracne.
- Main exposure (> 90%) is through dietary intake: meat, dairy, fish.

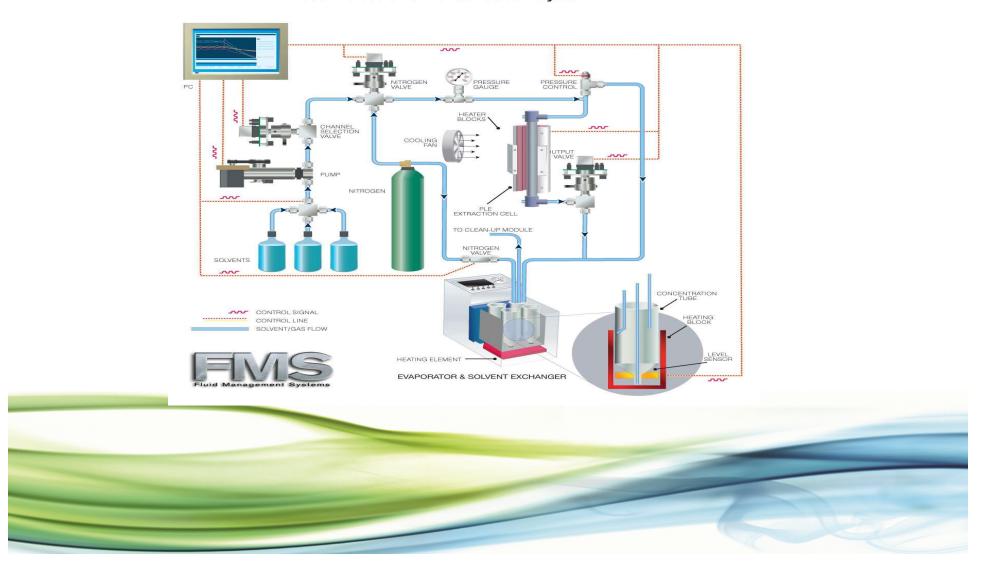
Sample Processing

- Analysis of various matrices for PCDD/Fs and PCBs using extraction and clean up.
- Soxhlet extraction (typically up to 24-36 h).
- Preparative multi column chromatography involving various solvents and steps.
- Can include acid-base-neutral silica, pure acidified silica, alumina, florisil and carbon columns. Use of 22% or 44% H2SO4 acid mixed with silica; 33% NaOH mixed with silica.

Automation

- Advantages of automated sample prep are:
- Reduced time: Pressurized Liquid Extraction (PLE) takes 60 min start-to-finish (50/50 DCM/hexane, 20 min at 120 oC, 1500 psi). Compare Soxhlet up to 36 h.
- Reduced cost: less labor involved, shorter turnover time per sample, less electricity use for PLE than Soxhlet.
- Reduced volume: less solvent used.

TotalEconoPrep



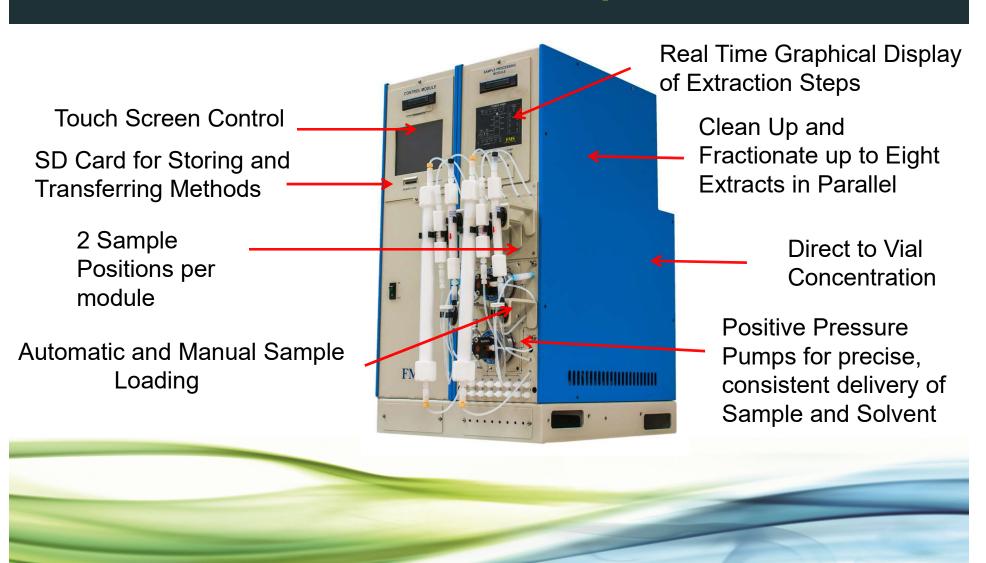
Pressurized Liquid Extraction

PLE® Fast Extraction & Concentration System

Extraction Procedure

- 1 g sample mixed with Hydromatrix[™] to dry, transferred to extraction cells
- Spiked with ¹³C PCDD/Fs and PCBs standards.
- Void volume filled with Hydromatrix[™].
- Sample Cells filled with 50% mixture Hexane/Methylene Chloride.
- Cells pressurized to 1500 PSI and heated to 120 °C.
- Temperature held for 20 minutes.
- Extraction cells cooled, flushed with solvent (50% cell volume), and nitrogen; collected in 250 mL tubes.

6 position evaporator


SuperVap Evaporation

- System pre-heated to 45-60 °C.
- Extracts evaporated at stable temperature under 5-6 psi nitrogen.
- Solvent exchange with hexane to eliminate dichloromethane.
- Dichloromethane would interfere with subsequent sample clean up.
- Extracts reduced to a few mLs.

EconoPrep®

Expandable and Modular

- Low Cost POPs analysis
- Runs 2 samples per Module In parallel
- Expandable up to 4 Modules
- Run up to 8 samples in Parallel
- Run up to 8 samples in 30 to 40 minutes

Expandable

EconoPrep 4
Capable of running
8 Samples in Parallel

Columns

- Silica PCB-free multilayer ABN silica gel column (sizes half, classical, high capacity, XL).
- Alumina PCB-free basic alumina column (mini and regular size).
- Carbon PCB-free carbon/celite column.
- Packed in disposable Teflon tubes; individually sealed in Mylar packaging; production in clean room environment.

EconoPrep Mini

Total run time 20 minutes

mini Up to 0.2 gm lipid

EconoPrep Classic

Total run time 30 minutes

Classical Up to 0.4 gm lipid

EconoPrep HC

Total run time 40 minutes

High
Capacity
Up to 5 gms
lipid

Procedure (1)

- •Columns are conditioned with hexane.
- •Samples are loaded onto silica column in hexane.
- •Silica column is eluted with hexane, analytes go onto alumina.
- •Alumina is eluted with methylene chloride; mono- and diortho PCBs are collected in Fraction 1.
- •Co-planary PCBs and PCDD/Fs are bound on carbon column.
- •Carbon is eluted in reverse (upward) direction with toluene collecting Fraction 2 (co-PCBs, PCDD/F).

Procedure (2)

- •Hexane, DCM and toluene used as solvents.
- •Solvent use between 150-335 mL depending on application.
- •Original 25-step PowerPrep program used ~ 800 mLs solvent.
- •For food application two fractions: PCB fraction (mono-, diortho) and PCDD/F/co-PCB fraction.
- •EconoPrep with different plumbing allows for collecting all PCBs in one fraction and all PCDD/F in one fraction; ideal for environmental samples. Depends on country/regulation.

24 position vial evaporator

Glass Evaporation tube

GC vial

DFS HRGC/HRMS

Classical PCB data

Compound Name			Olive Oil	Olive Oil
			Module 1 Position 1	Module 1 Position 2
344'5-Te-PCB 13C STD		78	100	
33'44'-Te-PCB 13C STD		82	64	
2'344'5-Pe-PCB 13C STD		82	107	
23'44'5-Pe-PCB 13C STD		87	118	
2344'5-Pe-PCB 13C STD		78	106	
233'44'-Pe-PCB 13C STD		69	99	
33'44'5-Pe-PCB 13C STD		82	105	
23'44'55'-Hx-PCB 13C STD		95	91	
233'44'5-Hx-PCB 13C STD			96	103
233'44'5'-Hx-PCB 13C STD			88	90
33'44'55'-Hx-PCB 13C STD			98	90
233'44'55'-Hp-PCB 13C STD			91	92

Classical Up to 0.4 gm lipid

Classical PCDD/F data

Compound Name	Olive Oil	Olive Oil
	Module 1 Position 1	Module 1 Position 2
2378-TCDF 13C12 STD	102	99
2378-TCDD 13C12 STD	101	103
12378-PeCDF 13C12 STD	100	94
23478-PeCDF 13C12 STD	103	109
12378-PeCDD 13C12 STD	102	106
123478-HxCDF 13C12 STD	101	94
123678-HxCDF 13C12 STD	109	99
234678-HxCDF 13C12 STD	99	98
123789-HxCDF 13C12 STD	95	97
123478-HxCDD 13C12 STD	80	95
123678-HxCDD 13C12 STD	91	95
1234678-HpCDF 13C12 STD	94	99
1234789-HpCDF 13C12 STD	103	85
1234678-HpCDD 13C12 STD	103	78
OCDD 13C12 STD	90	77

Classical Up to 0.4 gm lipid

High Capacity PCB data

			Olive	Red Palm
	Soil	Milk	Oil	Canola
PCB_77	68%	66%	92%	91%
PCB_81	70%	54%	90%	90%
PCB_105	86%	59%	93%	88%
PCB_114	61%	54%	93%	88%
PCB_118	78%	75%	90%	86%
PCB_123	76%	71%	94%	86%
PCB_126	80%	70%	87%	81%
PCB_156	67%	90%	98%	96%
PCB_157	65%	89%	99%	94%
PCB_167	71%	109%	97%	94%
PCB_169	89%	111%	104%	96%
PCB_170	76%	93%		95%
PCB_180	65%	79%	97%	92%
PCB_189	72%	93%	91%	91%

High
Capacity
Up to 5 gm
lipid

High Capacity PCDD/F data

	Animal	Peanut	Corn	Olive
	Feed	Butter	Oil	Oil
2378-TCDF 13C12 STD	78%	73%	61%	66%
2378-TCDD 13C12 STD	78%	73%	63%	66%
12378-PeCDF 13C12 STD	78%	78%	66%	69%
23478-PeCDF 13C12 STD	78%	73%	63%	65%
12378-PeCDD 13C12 STD	78%	77%	65%	72%
123478-HxCDF 13C12 STD	97%	74%	90%	78%
123678-HxCDF 13C12 STD	96%	74%	85%	81%
234678-HxCDF 13C12 STD	95%	64%	81%	86%
123789-HxCDF 13C12 STD	98%	80%	88%	84%
123478-HxCDD 13C12 STD	96%	68%	84%	89%
123678-HxCDD 13C12 STD	95%	64%	76%	83%
1234678-HpCDF 13C12 STD	90%	63%	85%	83%
1234789-HpCDF 13C12 STD	94%	66%	90%	87%
1234678-HpCDD 13C12 STD	91%	65%	80%	81%
OCDD 13C12 STD	80%	62%	84%	78%

High Capacity Up to 5 gm lipid

Conclusions (1)

- Total Econo Prep delivers cheap, efficient, and quick solution for sample extraction and clean up.
- Clean up part is flexible depending on sample requirements: mini, classical or HC.
- Excellent recoveries for both PCDD/Fs and PCBs for various complex matrices.
- Solvent use limited to 140-335 mLs depending on application.

Conclusions (2)

- Extraction and clean up can be done in 3-4 hours.
- Different plumbing available for food (PCBs in two fractions) and environmental (all PCBs together).
- Same day sample processing and analysis (HRGC/ HRMS): can be easily done in one day.

