

Eaton Analytical

Method 521

Using 7010 GC/MS Triple Quad

- The purpose of this project was to validate and show the performance of 7010 GC/MS Triple Quad for Method 521 with comparison to the Ion Trap(EPA approved instrument for Method 521) without deviating from EPA guidelines for sample preparation.
- EPA OGWDW considers alternate detection techniques without changing sample preparation.

🔅 eurofins

- Right now method 521 is performed ON 2000/4000 Varian/ion trap instruments which are going to be phased out.
- Due to the concern of N-Nitrosamines occurrence in drinking water and waste water, EPA might regulate these compounds.
- Better technology low parts per trillion detection limits in aqueous matrices

- Eurofins Eaton Analytical extracts and analyzes >3000 samples per year for method 521.
- Similar analytical procedures used as the ion trap to develop the method on the TQ.
- GC programs were very similar,
- Same inlet temperature
- > 30 meter DB 1701 MS column was used for TQ Vs. VF-5ms

Injection volume: 10ul for ion trap Vs. 1ul for TQ

eurofins

GC and MS Parameters: Table 1

New GC and MS Condition	S:						
Column	DB-1701ms, 30 m, 0.25 mm ID, 1.0 µm film thickness						
Injection volume	1.0 μL ⁻¹	2mm Dimpled, UI Liner					
Splitless injection	Purge flow to split vent	100 mL min ⁻¹ at 0.8 min					
MMI inlet temperature	35 °C for 0.1 min, 600 °C min ⁻¹ to 260 °						
Oven temperature program	33 °C for 1 min						
	35 °C min ⁻¹ to 80 °C, for 2 min.						
	10 °C min ⁻¹ to 140 °C, for 0 min 50 °C min ⁻¹ to 250 °C for 2.0 min						
Carrier gas	Helium at 1.2 mL min ⁻¹ c	constant flow					
Transfer line temperature	280 °C						
MS parameters used in the method:							
Ionization mode	EI; using HES ion source						
Source temperature	280°C						
Quadrupole temperatures	150°C						
Collision gas Quench gas	1.5 mL min ⁻¹ 4.0 mL min ⁻¹						
Emission	100µA						

Compounds With Transitions And Their Collision Energy: Table 2

Compound	Transition	CE	Compound	Transition	CE
NDMA-d6	80>50.1	6	NMOR	116>56.1	20
NDMA-d6	80>48.1	14	NMOR	116>86	4
NDMA	74>42.1	14	NPYR	100>70	10
NDMA	74>44.1	6	NPYR	100>55	10
NMEA	88>71	6	NPIP	114>97	10
NMEA	88>43	10	NPIP	114>84	10
NDEA	102>56.1	12	NDBA	116>99	20
NDEA	102>85	5	NDBA	158>141.1	6
NDPA-d14	144>126.1	5	NDPhA	169>77	20
NDPA-d14	144>50.1	10	NDPhA	169>66	20
NDPA	130>43	8			
NDPA	101>70	20			

Retention Times: Table 3

Compound Names	Abbreviation	Retention Time	
N-nitrosodimethylamine	NDMA-d6	5.95	Surrogate
N-nitrosodimethylamine	NDMA	5.99	Target
N-nitrosomethyethylamine	NMEA	7.54	Target
N-nitrosodiethylamine	NDEA	8.75	Target
N-nitrosodipropylamine	NDPA-14	11.60	Internal Std
N-nitrosodipropylamine	NDPA	11.64	Target
N-nitrosomorpholine	NMOR	12.18	Target
N-nitrosopyrrolidine	NPYR	12.48	Target
N-nitrosopiperdine	NPIP	12.83	Target
N-nitrosodi-n-butylamine	NDBA	14.48	Target
N-nitrosodi-n-phenylamine	NDPhA	21.26	Target

Lowest concentration minimum reporting level(LCMRL), Detection level(DL), and critical level(CL) was conducted to determine the sensitivity of the instrument

Used the same extracts for TQ and ion trap

LCMRL Comparisons

Table 4: LCMRL by GC-TQ

Compound	LCMRL	DL	Critical Level
NDMA	0.52	0.25	0.17
NMEA	0.39	0.16	0.09
NDEA	0.32	0.13	0.09
NDPA	1.20	0.58	0.36
NMOR	0.75	0.27	0.14
NPYR	1.10	0.36	0.13
NPIP	0.59	0.29	0.16
NDBA	0.99	0.51	0.31

Table 5: LCMRL by Ion Trap

Compound	LCMRL	DL	Critical			
	6.7	0.10				
NDMA	0.7	0.19	0.21			
NMEA	2.2	0.48	0.31			
NDEA	6.9	0.74	0.48			
NDPA	5.6	0.5	0.5			
NMOR	TBD	.41	0.35			
NPYR	TBD	.43	0.44			
NPIP	1.9	0.38	0.39			
NDBA	2	0.42	0.35			

GC-TQ is almost an order of magnitude more sensitive than the ion trap

Figure 1: TQ Calibration

Figure 2: Real Extract Sample Comparison- 0.5 to 3 ppt NMEA

Figure 3: Real Extract Sample Comparison- 0.5 to 10 ppt NDMA

Figure 4: Real Extract Sample Comparison- 0.5 to 35 ppt NMOR

Eaton Analytical

Figure 5: Real Extract Sample Comparison- 0.5 to 35 ppt NPIP

Eaton Analytical

Figure 6: Surrogate Recovery Is Within Limits for Both Methods

Eaton Analytical

- Real extracted samples(around 400 samples) were run on both the ion trap instrument and TQ
- Samples were run in similar time within holding time
- Used same standards, extraction process and spiking mixes

Figure 7 : Calibration comparison TQ to IT, 2.0 to 100 ppt for extracted sample sets

Eaton Analytical

🔅 eurofins

Split Extracted Real Samples for comparison between the Tandem Quadrupole and Ion Trap Instruments

	Sample	NDMA	NDMA	NMEA	NMEA	NDEA		NDPA		NPYR		NMOR	NMOR	NPIP		NDBA	
	Name	TQ	IT	TQ	IT	TQ	NDEA IT	TQ	NDPA IT	TQ	NPYR IT	TQ	IT	TQ	NPIP IT	TQ	NDBA IT
	MBLK	0.00	0.00	0.00	0.48	0.00	0.00	1.42	0.00	0.00	0.00	0.00	0.00	0.00	0.82	0.64	0.49
	CCCL																
	2PPT	2.26	2.04	2.21	2.03	2.14	1.94	2.08	2.55	2.01	1.97	2.01	1.97	1.99	2.01	1.70	1.80
	67	0.96	0.51	0.00	0.00	0.00	0.00	0.96	0.00	0.00	0.00	1.04	1.38	0.00	0.00	1.83	1.34
	68	1.17	0.80	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.71	0.00	0.45	1.10	0.64
	81	0.00	0.63	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.31	0.00	0.71	0.00	0.48	0.00	0.33
	82	0.65	0.85	0.00	0.00	0.00	0.18	1.39	0.00	0.00	0.00	0.39	1.00	0.00	0.43	0.97	1.58
	83	1.49	1.01	0.00	0.00	0.00	0.11	0.52	0.00	0.00	0.00	0.00	0.79	0.00	0.44	1.04	0.00
	98	1.28	1.23	0.00	0.47	0.00	0.17	0.49	0.00	0.00	0.00	0.44	0.62	0.00	0.54	0.99	0.40
	73	163.53	157.96	0.00	0.55	0.00	0.16	0.45	0.00	0.00	0.78	2.28	2.50	0.00	0.43	0.45	0.53
	74	36.15	33.46	0.00	0.46	0.00	0.36	0.39	0.00	0.00	0.59	0.72	0.47	0.00	0.93	1.27	0.77
	75	151.00	149.23	0.00	0.49	0.00	0.00	1.95	0.00	0.00	0.63	2.46	2.62	0.00	0.45	0.68	0.41
	76	7.84	6.78	0.00	0.00	0.00	0.00	0.57	0.00	0.00	0.30	0.93	0.45	0.00	1.92	2.20	1.45
	77	139.64	135.64	0.00	0.48	0.00	0.10	1.63	0.00	0.00	0.62	2.40	2.75	0.00	0.45	0.49	0.56
	78	7.01	6.94	0.00	0.00	0.00	0.18	1.48	0.00	0.00	0.68	0.53	1.44	0.00	0.80	1.14	1.12
	79	140.05	136.69	0.00	0.50	0.00	0.18	2.13	0.00	0.00	0.65	2.99	3.03	0.00	0.55	0.45	0.44
	781	132.18	133.22	0.00	0.00	0.00	0.37	0.43	0.00	0.00	0.73	2.69	3.67	0.00	0.00	0.65	0.61
	782	2.53	1.88	0.00	0.00	0.00	0.00	1.84	0.00	0.00	0.00	0.51	1.13	0.00	0.77	1.36	1.27
	783	128.14	108.21	0.00	0.46	0.00	0.36	1.67	0.00	0.00	0.00	2.67	2.82	0.00	0.00	0.65	0.66
	784	1.25	0.77	0.00	0.00	0.00	0.50	0.33	0.00	0.00	0.56	0.41	1.20	0.00	0.71	0.90	1.46
	14	0.49	0.00	0.00	0.00	0.00	0.54	1.76	0.00	0.00	0.00	2.76	3.14	0.00	0.00	0.76	0.76
	CCCM																
	40PPT	43.05	41.32	41.25	37.44	39.85	39.95	39.37	42.19	38.59	39.35	38.68	40.20	39.46	42.77	40.26	38.46
	CCC																
-J	100PPT	108.98	102.51	106.60	103.26	104.39	117.47	101.58	92.81	99.15	102.49	97.84	106.73	101.05	105.86	103.19	108.86
E	LCS3	87.88	71.51	89.65	73.44	85.77	85.09	86.53	75.48	86.65	76.02	89.31	73.52	91.12	83.06	90.44	87.47

Short run time

-TQ run time about 15 minutes vs. IT run time about 40 minutes(Cl used-Acetonitrile)

Conclusion- Separation for NDPA, NPYR and NMOR-IT with Methanol(CI) 20ppt 521 std

Chromatogram Plot

Eaton Analytical

eurofins

Conclusion- Better Separation for NDPA, NPYR and NMOR from QQQ-20ppt 521 std

Conclusion – Multiple Advantages to using GC-TQ

Less injection volume: 1ul Vs. 10ul

Low maintenance due to El mode

Data between TQ and IT shows good correlation

- Analyzing extracts in multiple labs using several different Agilent GC-TQ systems
- Preparation of a new version of 521 (521.1?) based on GC-TQ method.
- Review of complete multi-lab data package by EPA
- Promulgation as an approved method when EPA decides to regulate nitrosamines in drinking waters.

🔅 eurofins

Konjit Tadigo Konjittadigo@eurofinsus.com 626.386.1100

Eurofins Eaton Analytical, Inc. www.eurofinsus.com/eaton