

THE PROBLEM WITH 1,4-DIOXANE

AUGUST 11, 2016

Agenda Sample

SOLUTIONS YOU CAN COUNT ON. PEOPLE YOU CAN TRUST.

Introductions

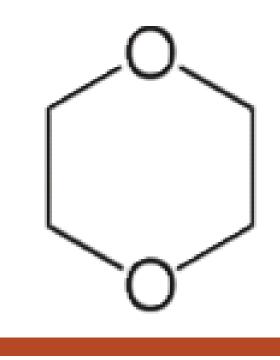
Characteristics of 1,4-Dioxane

About 1,4-Dioxane

Methodology

 $\left(\left\langle --\right\rangle \right)$

Regulatory Standards

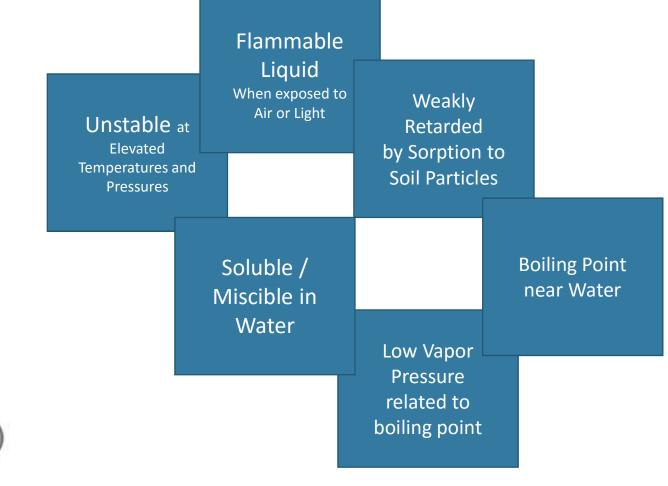


DOW Chemical PT Study

About 1,4-Dioxane

- Found in personal care products, shampoos, cosmetics, paint strippers, grease, waxes, etc..
- Organic solvent Was used as a stabilizer for 1,1,1-Trichloroethane
- Has been found in groundwater sites throughout the US
- Listed as an emerging contaminant in 2008 (EPA)

About 1,4-Dioxane

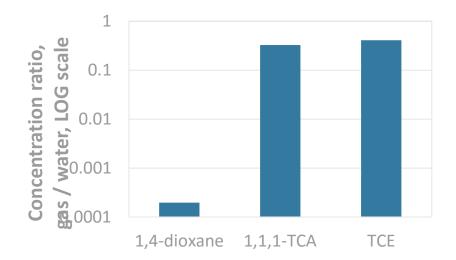

Exhibit 1: Physical and Chemical Properties of 1,4-Dioxane

(ATSDR 2012; Howard 1990; HSDB 2011)

Property	Value		
Chemical Abstracts Service (CAS) Number	123-91-1		
Physical Description (physical state at room temperature)	Clear, flammable liquid with a faint, pleasant odor		
Molecular weight (g/mol)	88.11		
Water solubility	Miscible		
Melting point (°C)	11.8		
Boiling point (°C) at 760 mm Hg	101.1 °C		
Vapor pressure at 25°C (mm Hg)	38.1		
Specific gravity	1.033		
Octanol-water partition coefficient (log Kow)	-0.27		
Organic carbon partition coefficient (log Koc)	1.23		
Henry's law constant at 25 °C (atm-m ³ /mol)	4.80 X 10 ⁻⁶		

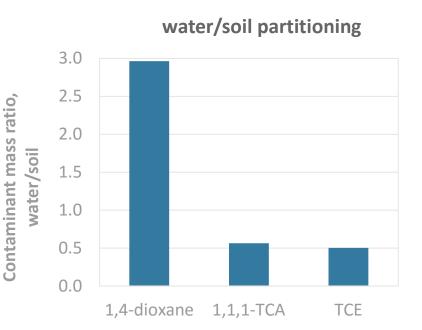
Abbreviations: g/mol – grams per mole; ^oC – degrees Celsius; mm Hg – millimeters of mercury; atm-m³/mol – atmosphere-cubic meters per mole.

Physical and Chemical Characteristics



1,4-Dioxane Chemical Properties: Henry's Law

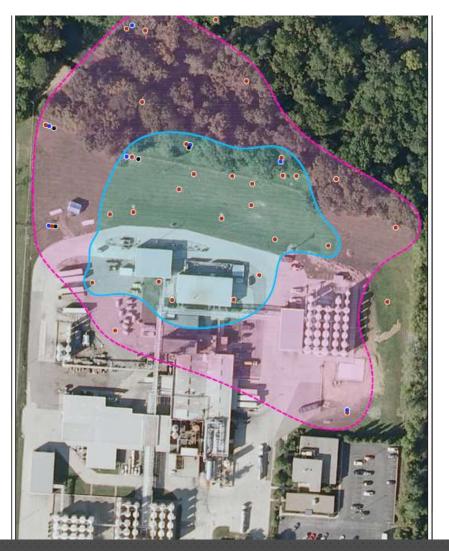
Very low Henry's Law constant, so 1,4-dioxane strongly prefers aqueous phase vs. gaseous phase



Howard, P. Handbook of Env. Fate & Exposure Data for Org. Chem. 1990; Martinez-Huitle and Andrade. Quimica Nova. 2011

1,4-Dioxane Chemical Properties: Sorption

- 1,1,1-Trichloroethane and Trichloroethylene can be indicators of 1,4-dioxane
- Does not sorb to soils but easily leaches from soil to groundwater
- Transported at rate similar to groundwater seepage velocity
- Typically found at leading edge of plumes
- Sorption to activated carbon is less effective



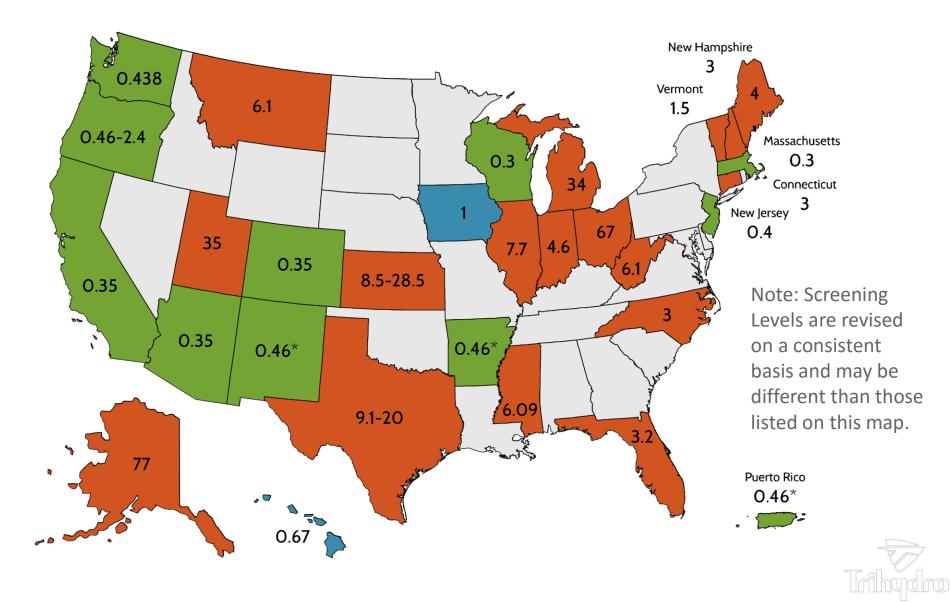
Howard, P. Handbook of Env. Fate & Exposure Data for Org. Chem. 1990; Martinez-Huitle and Andrade. Quimica Nova. 2011

Example Project Site

Industrial Chemical Facility

- Complex Setting
- Hydrogeology / geology
- Surface water features to the west and north
- Potential for other off-site sources
- Impacts date back to the 1980s
- Chlorinated alkenes (PCE, TCE, DCE, VC)
- Chlorinate alkanes (TCA)
- 1,4-dioxane
- Not part of original COC list; subsequently required
- Plume extent expanded both vertically and horizontally
- Conducted detailed analytical comparative analyses
 as part of site-specific risk assessment
- Evaluating enhanced remedial alternatives (expansion of P&T; in situ bioremediation; ozone)

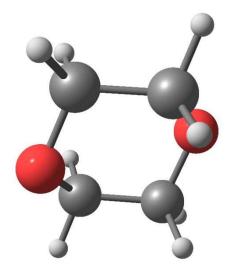
1,4-Dioxane Regulatory Standards for Groundwater


- No Federal Maximum Contaminant Level; USEPA MCL Goal - 0.35 µg/L
- USEPA Regional Screening Level 0.46 µg/L
- State Standards First proposed by Colorado in 2005 at 6.1 µg/L; since lowered to 0.35 µg/L (CDPHE 2012)

0.25 μg/L	6.7 μg/L	7.7 μg/L	140 μg/L	N

- No state standards in 20 states
- WHO suggest 50 µg/L as drinking water threshold

1,4-Dioxane Standard (µg/L)


Analytical Issues

Need a Method that can...

- Provide low enough reporting limits
 - Several EPA methods for sample preparation and/or analysis are available that can reduce DLs to the low-ppb range
- Be more sensitive but also accurate
- Approved by regulatory bodies
- Provide repeatable results

Method	MDL (µg/L)	RL (µg/L)	Detection Limit Source	Sample Prep Method	Sample Volume	Matrices	EPA Approval
EPA 522	0.020 - 0.026	0.036 - 0.047	Method	Solid Phase Extraction	1000 mL	Drinking Water	Approved
EPA 1624			Method	Heated Purge and Trap	3 x 40 mL	Surface/waste water	Approved
SW-846 8260	36.8 - 150	150-200	Labs	Purge and Trap	3 x 40 mL/100 g	Water/Soil	Approved
SW-846 8260 (SIM)	0.5 - 10		EPA	Purge and Trap	3 x 40 mL/100 g	Water/Soil	Approved
SW-846 8260B (ID)				Purge and Trap	3 x 40 mL/100 g	Water/Soil	Approved
SW-846 8261A	1.0	1.1	Cincinnati Analytical Instruments	Vacuum Distillation	3 x 40 mL/100 g	Water/Soil	Approved
SW-846 5031/8260B	12		Method	Azeotropic Distillation	3 x 40 mL/100 g	Water/Soil	Approved
SW-846 8270C	0.23 - 1.0	0.2 - 0.5	Method	Liquid-Liquid Extraction	2 x 1 L/100 g	Water/Soil	Certification or Accreditation not available
SW-846 8270C (ID/SIM)	0.09	1.0	Labs	Liquid-Liquid Extraction	2 x 1 L/100 g	Water/Soil	Certification or Accreditation not available

ANALYTICAL METHODOLOGY

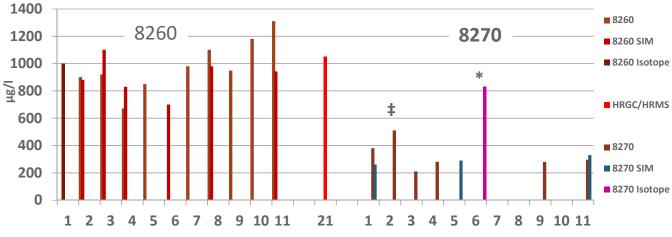
8260 Preparation Methods	Addresses Solubility?	Addresses Boiling Point?	Meets Detection Limits?	Meets Performance Criteria?	EPA Approved?
SW-846 5030C	No	No	Sometimes	No	Yes
SW-846 5030C MOD	No (but Improved)	No (but Improved)	No (but Improved)	Yes	Yes
SW-846 5021A	No (but Improved)	No (but Improved)	No (but Improved)	Yes	Yes

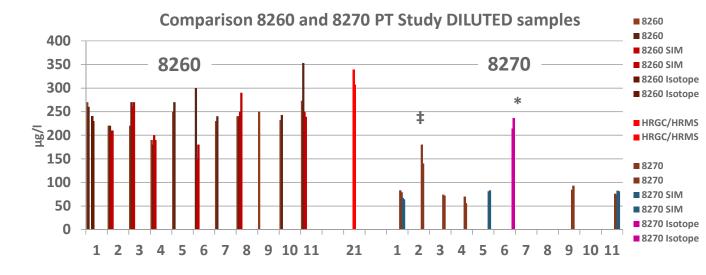
8260/5030 is the only commonly used approved EPA method State approved methods are State specific

Analytical Methods	Addresses Solubility?	Addresses Boiling Point?	Meets Detection Limits?	Meets Performance Criteria?	EPA Approved?
EPA 522	Yes	Yes	Yes	Yes	Drinking Water Only
EPA 1624 REV B	Yes	Yes	Yes	Yes	Surface and Waste Water Only
SW-846 8260B	See Preparation	See Preparation	No	No	Yes
SW-846 8261A	Yes	Yes	Yes	Yes	No
SW-846 8270C/D	Yes	Yes	Yes	Yes	No

ANALYTICAL METHODOLOGY

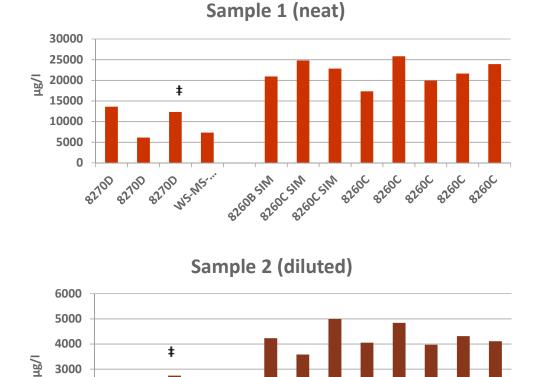
Analysis of 1,4-Dioxane Results of comparability studies


Michael Wilken



Annual DOW PT samples

Comparison 8260 and 8270 PT Study NEAT sample



- Annual PT samples
- 11 preferred laboratories
- + 10 other laboratories
- Blended real samples
- for VOC, SVOC, metals, anions analysis
- 1,4-Dioxane with all available methods in the lab
- no 1,4-Dioxane spiked

- * corrected for recovery rate
- ‡ continuous extraction

Direct comparison with different samples

82.60C 51M

8260B 51M

8260C51M

8260C

N 2760C 3760C 3760C 3760C

3000 2000 1000

0

82700

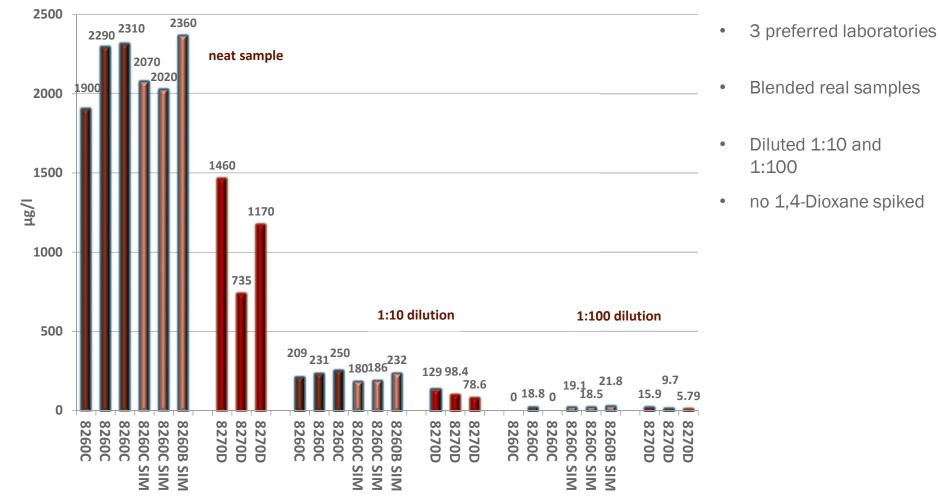
WS-MS-"

82700

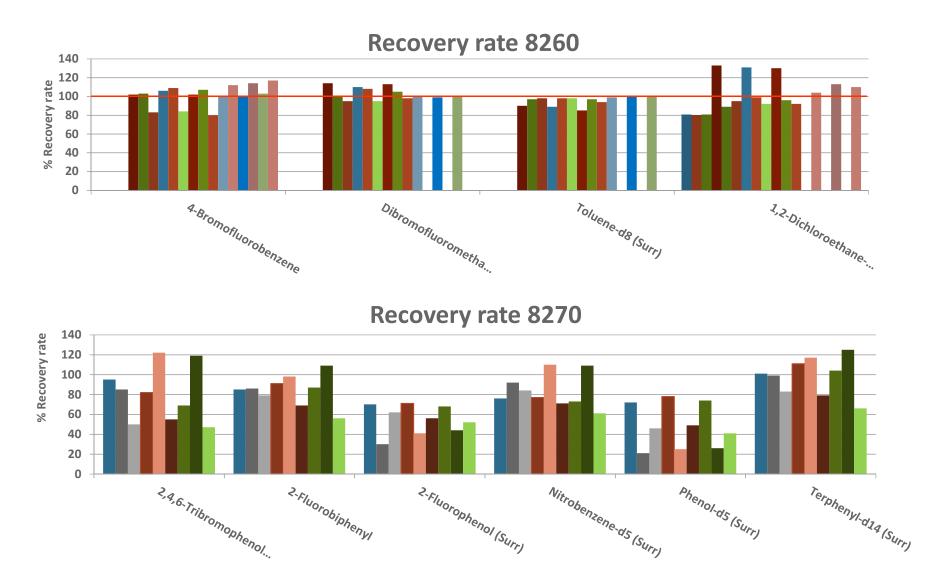
82700

- 4 preferred laboratories •
- **Blended real samples** ۰

Dow


- 1,4-Dioxane with all available ۰ methods in the lab
- no 1,4-Dioxane spiked •

17


Direct comparison over wider concentration range

Dow

Recovery Rate Comparison

Dow

Summary

- Compared to all VOC methods (8260), the SVOC methods (8270) deliver substantially LOWER data in all studies with REAL WORLD samples
- The differences can be up to a factor of 3
- This may be due to
 - poor and insufficient extraction
 - no correction for surrogate recovery
- As VOC methods are not capable to analyze in sub ppb-range, and the drinking water method 522 does not ask for recovery correction as well, we are in the urgent need of a reliable method
- One step is the implementation of the Isotope dilution method

Questions? WHAT WHY WHERE WHEN WHO HOW