Exploring the Great Unknown: New Tools to Assess Complex Mixtures

NEMC, Orange County CA: 11th August 2016

Shane Snyder, Ph.D.

Professor: Environ. Eng. Co-Director: WEST Center University of Arizona

> Editor in Chief Chemosphere

WATER & ENERGY SUSTAINABLE TECHNOLOGY

Research Specialists

Armando Durazo: UCLA

snyderlab.arizona.edu

Christiane Hoppe-Jones: Colorado SM

Hye-Weon Yu: GIST Korea Shawn Beitel: U. Saskatoon

Ph.D. Students

Hui Wang: Harbin I. Technology Minkyu Park: GIST Korea Sheena Young: Johns Hopkins U. Kevin Daniels: Northern Arizona U. Mauricius Santos: UTFPR Brazil Byron Hempel: U. Kentucky Shimin Wu: Peking University

M.S. Students

Weikang Ji: China Agricultural U. Norma Villagomez-Marquez: UNC Mojtaba Azadi: Sharif UT Tharun Murali: SASTRA U

Clean and Safe Water

Energy and Environment

Researchers find unsafe levels of industrial chemicals in drinking water of 6 million Americans The Washington Post

Charges against 3 in Flint water crisis 'only the beginning' *wed April 20, 2016*

Water Reuse Future

OCT 08 2013 OFFICE OF THE GOVERNOR

To the Members of the California State Senate:

I am signing SB 322 which requires the Department of Public Health in consultation with the State Water Resources Control Board, to investigate the feasibility of developing uniform water recycling criteria for direct potable reuse by September 2016.

This information is past due. In an effort to enhance the use of recycled water, I have proposed the consolidation of the management of the drinking water program and all other water quality programs, including recycled water, under the State Water Board.

I am directing the Water Board to ensure that this work is completed expeditiously. The 3-year time frame mandated in this bill is too slow. California needs more high quality water and recycling is key to getting there.

Sincerely,

Brown)

Restrictions on Ocean Outfalls

- South Florida
 - 2025 Ocean outfalls banned (except rain)
- Cape Cod
 - Moratorium on new outfalls and expanding existing
- California
 - Evidence of endocrine disruption at discharges

Potential Contaminants

But are we looking for the right things?

Is Flag's drinking water at risk?

CYNDY COLE Sun Staff Reporter | Posted: Tuesday, October 18, 2011 5:30 am

"About two years ago, very small traces of an antibiotic, an anti-seizure medication and a possible cancer-causing agent appeared in four groundwater wells in northwest Tucson.

All of the wells are located downstream of the local sewage treatment plant, which releases its treated sewage water into a riverbed.

When tested, some of Flagstaff's drinking water wells downstream of the Rio de Flag wastewater treatment plant have also shown tiny traces of other pharmaceuticals and hormones, which have an ability to influence growth in amphibians."

Comprehensive Screening

Targeted quantification

Analysis of a small set of predefined target compounds

Comprehensive Screening

Targeted quantification

Analysis of a small set of predefined target compounds

ICP-MS

compounds

Metals and targeted organic complexes

Non-targeted screening

Characterization of broader/unknown compounds

Tiered Testing Strategy

Tier 1

Bulk Water Characteristics (Surrogates)

On-line & off-line analysis

- General parameters (pH, temp, conductivity, turbidity, TSS)
- Organic parameters (TOC/DOC, UV254, fluorescence)
- Inorganic parameters (NO₃, NO₂, anion/cation, oxidant residuals)
- Near real-time performance

ftp://ftp.sccwrp.org/pub/download/DOCUMENTS/CECpanel/CECMonitoringInCARecycledWater_FinalReport.pdf

Ozone Disinfection

E. Coli - Healthy

Post-AOP

Sherchan, S. P.; Snyder, S. A.; Gerba, C. P.; Pepper, I. L. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. **2014**, 49 (4), 397-403.

MBR-RO control

MBR-Ozone-RO (3 mg/L)

Stanford, B. D.; Pisarenko, A. N.; Holbrook, R. D.; Snyder, S. A., Preozonation Effects on the Reduction of Reverse Osmosis Membrane Fouling in Water Reuse. *Ozone-Sci. Eng.* **2011**, *33* (5), 379-388.

Fluorescence Surrogate

Merel S, Anumol T, Park M, Snyder SA. J. Hazard. Mater. 2015 282:75-85

Indicator: Ozone Oxidation

Pisarenko, AN et al.. Water Res. 2012, 46 (2), 316-326.

Ozone Process Control

Environmental Science Water Research & Technology

PAPER

Cite this: Environ. Sci.: Water Res. Technol., 2015, 1, 699

Modeling approaches to predict removal of trace organic compounds by ozone oxidation in potable reuse applications[†]

Minkyu Park,^a Tarun Anumol^{ab} and Shane A. Snyder*ac

On-Line/Real-Time Sensors

BUT, WHAT IS FORMED? DOC BEFORE OZONE AND AFTER OZONE IS ESSENTIALLY EQUAL.

Sgroi M, Roccaro P, Oelker GL, Snyder SA. *ES&T* 2014 48:10308-10315.

Merel S, Anumol T, Park M, Snyder SA. 2015 J. Hazard. Mater. 282:75-85

OZONE TREATMENT & QTOF ANALYSIS OF UNKNOWNS

Although chromatograms were all similar for the analyst, clear differences appear on the heatmap

A & C are group of compounds in the raw water but at lower concentration or absent in ozonated water (removed by ozone)

B & D are compounds absent in raw water but present in treated water (ozone by-products)

Merel S, Anumol T, Park M, Snyder SA. 2015 J. Hazard. Mater. 282:75-85

OZONE TREATMENT & QTOF ANALYSIS OF UNKNOWNS

Merel S, Anumol T, Park M, Snyder SA. 2015 J. Hazard. Mater. 282:75-85

Benzotriazole Transformation

Mawhinney, DB, BJ Vanderford, SA Snyder. (2012) **ES&T** 46(13):7102-7111.

MS/MS Identifies CBZ Product

NON-TARGETED EXAMPLE: *TRANSFORMATION PRODUCTS OF CHLORINE*

GC-ICP-MS

Advantages:

- No water present → little/no oxide interferences
- No evaporative cooling of plasma \rightarrow lower RF forward power
- Lower RF power \rightarrow fewer Ar-based ions (⁴⁰Ar⁺, ³⁸Ar⁴⁰Ar⁺, ³⁸Ar⁴⁰ArH⁺, etc.)

... Interference-free analysis without collision gas

Nonylphenol Transformation

- Used in antioxidants, oils, detergents, emulsifiers
- Technical mixture of many isomers
- Known to have estrogenic activity
- EPA Drinking Water CCL4 Draft List

1999 Environ. Sci. Tech. 33(16) 2814-2829

Analytical Methods for Detection of Selected Estrogenic Compounds in Aqueous Mixtures

```
SHANE A. SNYDER,*.<sup>†</sup>
TIMOTHY L. KEITH,<sup>†</sup>
DAVID A. VERBRUGGE,<sup>†</sup>
ERIN M. SNYDER,<sup>†</sup> TIMOTHY S. GROSS,<sup>‡</sup>
KURUNTHACHALAM KANNAN,<sup>†</sup> AND
JOHN P. GIESY<sup>†</sup>
```

can operate through a number of both direct and indirect mechanisms of action, of particular concern are those compounds that mimic endogenous estrogens. The Safe Drinking Water Act Amendments of 1995 (Bill No. S.1316) and the Food Quality Protection Act of 1996 (Bill No. P.L. 104-170), which mandate comprehensive screening for estrogenic and anti-estrogenic chemicals, are examples of the increasing public concern regarding endocrine disruption. While it is known that many natural and synthetic chemicals are estrogenic, it is unclear whether the concentrations of estrogenic agents present in the environment are sufficient to cause adverse physiological effects. One aspect of conducting human or wildlife risk assessments is an

Nonylphenol Oxidation

Analytical Strategy

Nonylphenol – GC-QTOF

NP Oxidation with Chlorine

DBP formation after oxidation with chlorine:

NP Oxidation with Chlorine

Monohalogenated DBPs: (19-22 min retention times)

10min 30min 1h 2h 5h

NP Transformation Pathway (OCI)

A NP Oxidation w/Chlorine Dioxide

DBP formation after oxidation with chlorine dioxide:

Dihalogenated DBPs:

Transformation Pathway (CIO2)

NP Oxidation with Monochloramine

DBP formation after oxidation with monochloramine:

A

NP Oxidation w/Chloramine

Monohalogenated DBPs:

10min 30min 1h 2h 5h

NP Oxidation w/Chloramine

Dihalogenated DBPs:

NON-TARGETED EXAMPLE: *TRANSFORMATION PRODUCTS OF UV AOP*

UV Transformation Products

Formation of nitrogenous byproducts through UV photolysis

• Formation of nitrogenous byproducts (nitro- or nitroso aromatic compounds) through nitrate photolysis with organic precursors

Experimental matrix for UV AOP genotoxicity

- UV lamp type: low pressure (LP) and medium pressure (MP)
- Test water: Secondary treated wastewater (Ina Rd. WWTP)
- Oxidant: Hydrogen peroxide

		Nit (0 m	rate ng/L)	Nitrate (10 mg/L)		
	JV	H ₂ (mլ	O ₂ g/L)	H ₂ O ₂ (mg/L)	
/H ₂ O ₂ AOP		0	7	0	7	
UV dose (mJ/cm ²)	0	X	X	X	X	
	400	X	X	X	X	
	800	X	X	X	X	

UV collimated beam device

Ames mutagenicity test

- Mutagenicity strain: *Salmonella typhimurium (*TA98 w/o S9)
- Type of reversion mutation: Frameshift

Characterization of a larger set of unknown compounds

Discovery of New DBPs

Discovery of Novel UV Transformation Products

Fragmentation pattern of lopamidol

MS/MS spectra of lopamidol

MS/MS spectra of lopromide

DISCOVERY & TREATMENT OF GLUCOCORTICOID STEROIDS

Jia, A.; Wu, S.; Daniels, K. D.; Snyder, S. A., Balancing the Budget: Accounting for Glucocorticoid Bioactivity and Fate during Water Treatment. *Environ. Sci. Technol.* **2016**.

Integrated Approach

Identification of

chemicals of

interest

Effect Directed Analysis

H₃C

Integrated Approach

NTA	Bioassays
Develop NTA Tools and Standardizing Protocols	Selection of Endpoints and bioassays
Identify Transformation Products and Other Unknowns	Interpretation Framework for Cell Bioassay Results
Characterize Source Water Quality	Standardization of Methods
Update Surrogate Lists for Targeted Monitoring	Multiplexing Cell Bioassay Technologies

Transient Transfection Assay

Multiple Endpoints Considered

Reclaimed Water Screening

	GR	AR	ER	Receptors:
Blank controls				GR = glucocorticoid
Roger Rd Site				AR = androgen
Green Valley no treatment				ER = estrogen
+ Ozone				
+ UV				
+ Ozone/UV				
+ H2O2/UV				
+ Chlorine				
Green Valley Pilot				
6		-6 10	og ₂ ratio sa	mple/controls

Glucocorticoids (GRs)

- Natural & Synthetic
- Used for human diseases such as severe allergies, skin problems, asthma, and arthritis
- Used as veterinary medicine to restore muscle strength and as growth promoters to increase muscle size

GRs Are Widely Used Drugs

Amount prescribed in UK (2006)

Class	Prescribed
	(kg)
Estrogens	480
Androgens	307
Progestogens	1705
Glucocorticoids	4368

Human and Ecological Risk Assessment: An International Journal Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/bher20 Pharmaceuticals in the Aquatic

Environment: Steroids and Anti-Steroids as High Priorities for Research

Tamsin J. Runnalls^a, Luigi Margiotta-Casaluci^a, Subramaniam Kugathas^a & John P. Sumpter^a ^a Institute for the Environment, Brunel University, Uxbridge,

Middlesex, UK Published online: 15 Dec 2010.

Medicare drugs USA (2013)

TOP 10 MEDICARE TRADITIONAL THERAPY DRUGS RANKED BY 2013 PMPY SPEND

RANK	DRUG NAME	THERAPY CLASS	
1	Nexium® (esomeprazole magnesium)	Ulcer Disease	
2	Lantus® (insulin glargine)	Diabetes	
3	Crestor® (rosuvastatin)	High Blood Cholesterol	
4	Advair Diskus® (fluticasone) propionate / salmeterol)	(Asthma)	I
5	Spiriva® HandiHaler® (tiotropium)	COPD	
6	Abilify [®] (aripiprazole)	Mental / Neurological Disorders	
7	Cymbalta® (duloxetine)	Depression	
8	Namenda [®] (memantine)	Mental / Neurological Disorders	
9	Januvia® (sitagliptin)	Diabetes	
10	atorvastatin	High Blood Cholesterol	

Source: The 2013 Drug Trend Report, Express Scripts Lab.

Approved as OTC in 2014

Fluticasone propionate (Flonase) Triamcinolone acetonide (Nasacort)

GR Chemical Structures

Corticosterone C21H30O4	Cortisone C21H28O5	Hydrocortisone C21H28O5	6α-Methylprednisolone C22H30O5
HO H H H	OH OH OH OH OH OH	HO H H H H H H H H	
Betamethasone C22H29FO5	Dexamethasone C22H29FO5	Budesonide C25H34O6	Mometasone furoate C27H30Cl2O6
Clobetasol propionate	Fluocinolone acetonide	Fluticasone propionate	Triamcinolone acetonide
C25H32ClFO5	C24H30F2O6	C25H31F3O5S	C24H31FO6

In most synthetic GRs, halogens are incorporated to increase drug stability, potency, and efficacy.

In Vivo Evaluation with GRs

Glucocorticoid activity detected by *in vivo* zebrafish assay and *in vitro* glucocorticoid receptor bioassay at environmental relevant concentrations

Qiyu Chen^a, Ai Jia^b, Shane A. Snyder^b, Zhiyuan Gong^c, Siew Hong Lam^{a, c, *}

Treatment in Larvae	Treatment in Dexamethasone (DEX)		Prednisolone (PRE)				Triamcinolone (TRI)					
Gene	50 pM	500 pM	5 nM	50 nM	50 pM	500 pM	5 nM	50 nM	50 pM	500 pM	5 nM	50 nM
pepck				44	٠			48				416
baiap2	**		(89)			4.8			44			
pxr				() - 4162 - (- 42	8.0		447	- 36
mmp-13	**					- 18.8					-	
cdkn1c				(**)	*				**			
mmp-2												
fkbp5									Mean Fe	old-Change	relative to	Control (
cyp3a65				[]		*				> 3		ŝ
sox9b		**		**			**			<pre>> 2 to 3 > 1 to 2 ** P < 0.01 > 0 to 1 * P < 0.05 Not significant (P > 0.05) < 0 to -1 < -1 to -2 < -2</pre>		
gilz							•					
mmp-9	Č.					**						
									-			

In Vivo Evaluation with GRs

Brain-specific angiogenesis inhibitor 1-associated protein 2): insulin receptor

Pregnane X receptor (pxr): signals for detoxification

Phosphoenolpyruvate carboxykinase (pepck): gluconeogenesis

Chemosphere 144 (2016) 1162-1169

In Vivo Evaluation with GRs

GR Cellular Activity

Targeted Quantitative Analysis

MDLs: 0.02-5 ng/L

Balancing the GR Budget

GR Occurrence

Biological Potency (In Vitro)

115		GRs	ЕС ₅₀ (nM)	REP
100		Prednisone	>500	<0.004
		Cortisone	>500	<0.004
85		Prednisolone	17.7	0.101
		Triamcinolone	11.8	0.152
70		Fludrocortisone acetate	9.67	0.185
Ia)		Hydrocortisone	6.81	0.264
DEX N		6α- methylprednisol one	6.79	0.264
× ⁴⁰		Betamethasone	2.83	0.634
0		Fluocinonide	1.89	0.948
25		Dexamethasone	1.79	1.000
10		Triamcinolone acetonide	0.79	2.265
10		Flumethasone	0.36	5.032
		Budesonide	0.26	6.895
-5 1.]	E-13 1.E-12 1.E-11 1.E-10 1.E-09 1.E-08 1.E-07 1.E-0	Fluocinolone acetonide	0.24	7.398
	Concentration (M)	Clobetasol propionate	0.048	37.04
Sy	nthetic GRs have much	Fluticasone propionate	0.025	70.88
hi	gher bioactivity.	GRs mixed standard	0.005	329

 Mass-Activity Balance Achieved

 Chemi-EQ=Sum(concentration*relative potency)

 • $\frac{100}{250}$ • Chemi-EQ © Bioassay-EQ

 • $\frac{100}{250}$ • Ozone
 Cl₂
 UV

 • $\frac{100}{250}$ • Ozone
 Cl₂
 UV

Acknowledgements

Contact: snyders2@email.arizona.edu Visit Us: snyderlab.arizona.edu