

Untargeted Screening on the X500R QTOF

R. E. Haufler, Paul Winkler, Andrei Schreiber, SCIEX, Concord, ON Canada NEMC August 2016

RUO-MKT-11-4397

Outline

X500R technology and performance

X500R QTOF Scan modes

Application Examples

X500R Technology and Performance

Super simplified TOF

- At t=0, all ions are accelerated to the detector
- Acceleration is constant energy, all ions achieve the same K.E.
- Since KE=0.5*mass*velocity², velocity is mass dependent, therefore the time to impinge on the detector is mass dependent

lons enter the accelerator

Resolution is a key requirement

- Necessary for mass accuracy, but does not guarantee mass accuracy
- For differentiation of nearby peaks
- Helps with sensitivity in TOF

Causes of resolution loss

- Jitter timing and voltage
- Path-length variation detector, mechanical variation
- Trajectory variation ion position, ion velocity variation

Mass Resolution

ESI QTOF Geometry

Parameter	Value
Liner length	495mm
Mirror Length	102mm
Mirror Stage 1 length	36mm
Mirror Stage 2 length	66mm
Accelerator AC section length	12mm
Accelerator DC section length	60mm
Liner potential	+/-6kV
Mirror Plate potential	-/+2.1kV
Mirror Grid Potential	0
Pusher plate potential	-/+1.6kV
Beam energy	22eV
Effective flight path length	2.35m
Actual path length	1.95m

Inlet orifice

Space velocity correlation focusing

Correlated position and velocity eliminates turnaround time problem

"Resolution and spectral line shapes in the reflecting time-of-flight mass spectrometer with orthogonally injected ions," V. V. Laiko and A. F. Dodonov, RCMS 8 720-726 (1994).

"Improved resolution and substantially higher sensitivity on a QTOF mass spectrometer," A. Loboda, I. V. Chernushevich, and Nic Bloomfield, 57th ASMS conference 2009.

0.15

0.1

0.05

Z=65

Z=70

Z=75

Z=80 Z=85 Z=65

Z=70

Z=75

Z=80

Z=85

•

.

500

400

300

200

100

0

8

-6

counts

NTOF Analyzer

Mass Resolution – Detector tilter

Resolution Performance, MS mode

Resolution Stability

Mass Accuracy

- Resolution is nothing without mass accuracy¹
- Mass accuracy means confidence in the indicated peak position is accurate and stable.
- A narrow high resolution peak can be an unreliable indicator of peak position.

¹Bob Haufler, NEMC 2016

Mass Accuracy: Thermal effects

The high voltage power supplies are independently thermally stabilized

Mass Accuracy - Statistical

Each sample was acquired every 20 minutes.

Mass Accuracy - Systematic

Linear calibration equation, 2 coefficients: a and t_0 : $mass = [a \cdot (t - t_0)]^2$

GluFib=[Glu1]-fibrinopeptide B

Sensitivity – no beam aperturing

X500R Scan Modes and Data Acquisition

QTOF scan modes

Mode	Q1	Collision cell	TOF	Workflow
TOFMS	Open, all ions pass	Off	All ions detected (precursors)	Targeted, suspect and unknown screening
TOFMSMS	Set to target precursor	On	All fragments detected	Targeted, suspect and unknown screening
SWATH	Scanning 25 amu window	On	All fragments detected	Suspect and unknown screening
MRM ^{HR}	Set to precursor	On	All fragments detected	Targeted quantitation and confirmation

IDA	Scan mode		Time
Step 1	TOFMS	Survey Scan-Obtain precursor ion list	0.1-0.5 sec
Step 2	TOFMSMS	Obtain fragment MS of 1 st precursor	0.05-0.1 sec
Step 3	TOFMSMS	Obtain fragment MS of 2 nd precursor	0.05-0.1 sec
Step 4	TOFMSMS	Obtain fragment MS of 3 rd precursor	0.05-0.1 sec
		Total	~1sec

Cycles repeatedly during chromatography

Untargeted Analysis

- Known unknowns (suspect screening) spectra exists in library (MSMS and possibly retention time)
 - Library match
 - Formula finder
 - Isotope pattern
 - MSMS pattern
 - Compare retention time if LC method is standard
 - Obtain standard for confirmation and quantitation
- Unknowns (unknown screening) no spectra exists in library
 - Formula finder
 - Isotope pattern
 - ChemSpider
 - MSMS pattern
 - Obtain standard based on ChemSpider results for confirmation

IDA details - Data Acquisition Setup

						New	♥ Open	Save	Print	Advanced 🔹 🗙
沿 Untitled										
Method Overview Device: X500 QTOF Ion Source: TurboSpray	Method duration Estimated cycles:	5 min	Total scan time:	1.311 sec						Add Experiment 💌
IDA 0 min + 5 min	TOF MS TOF start mass TOF stop mass Accumulation time	100 Da 1000 Da 0.25 sec	Declustering potential DP spread	80 V 0 V	Collision energy CE spread	10 C V 0 C V				
	Advanced Experiment Sett Time bins to sum Channel 3	ings 4	Channel 1 Channel 4	✓✓	Channel 2	V				1
	IDA Criteria All Maximum candidate ions Intensity threshold exceed	10 Cps	 ✓ Dynamic backgroun Exclude former cance For After 	id subtraction fidate ions sec ccurrences	Dynamic CE for N Charge state	ts/MS 2 to 4				
	Dynamic accumulatio Candidate mass range t Inclusion List Exclusion List	n e 400 🗘 Da to 1250 🏶 Da	 Exclude isotopes +/ Adjust CE when usin Mass Defect Filter Isotopic Matching 	- 4 Da	Mass tolerance +/-	50 🔹 e mDa 🔵 ppm				
Data Acquicition	TOF MSMS Precursor ion TOF start mass	830 🗘 Da 50 🗘 Da	Declustering potential DP spread	80 ° V 0 ° V	Collision energy CE spread	35 V 15 V		Chart	- Fina	Four
M	15									

IDA Data

IDA Data

Sample - Control Comparison in SCIEX OS Software

Quick example: unknown screening of food dye compounds

🗘 - Analytics 🔷 🗠		💄 🕜 Offline 🕴 ? – 🗗 🗴
	Project: AS artificial food dyes Projects	Results Reporting Views Process Method X
Samples Components and Groups Options *		Begin by creating a results table or opening an existing one.
	Process New Results X 1. Select batch samples to process Available Image: Selected Image: Select batch samples to process Image: Select batch samples to procese samples t	- Select samples
	dyes neg 03_yellow 1.wiff2 dyes prec 03_yellow 1.wiff2 equil column.wiff2 C. Select a processing method GUS dyes.qmethod Select a comparison sample for Non-targeted workflow sugar (dyes neg 02_sugar 1.wiff2, 2) Process Cancel [Help]	Select control
Data Acquisition Ms		Start 💌 🖬 Stop Save 🕅

Unknown Screening in SCIEX OS Software

Results Review and Filtering in SCIEX OS Software

Table is Filtered by Formula Finding Results and Sorted by Area

🗘 - Analytics 🔷 🖄	-														-	9	🕜 Offlir	ie ?	- 8 ×
									P	oject: AS artificial fo	od dyes	rojects 🔹 Resu	ılts	👻 Repo	rting	♥ Vie	ews	Process Metho	od 👻 🗙
Samples Components and Groups	[MQ4] Pea	k Review (Untitled)																	
Options 👻	0								(Charles and the	THE			*a 🗾 di	CH /					
R 10000x			r		_		-		Sample	Type • Aco	eptance 👻	% ♣ /az	C III		<u> </u>			Aore 👻	
Y 10000x	Index	Sample Name	Component Name	Area	Retention	Found	Used	Library Confi	Form	Library Hit	Library	Formula Finder Results	Area	Formula	Non-Tar				Â
BI 10000x				10000	Time	At Mass	10000		C		Score		Ratio of	. Finder Sc	. Peak				
Br 10000x	♦ 400	R 10000x	834.6480 / 5.02	4.051e6	5.03	834.6481		•	1	No Match	0.0	C20H8I4O5	N/A	94.470					
El sugar	384	R 10000x	708.7515 / 4.91	2.790e5	4.91	708.7515	V	•	~	No Match	0.0	C20H9I3O5	N/A	93.441	V				
u suga	86	R 10000x	206.9994 / 2.76	5.477e4	2.77	206.9994	V	•	~	No Match	0.0	C10H5N2NaS	N/A	73.708	V				
	37	R 10000x	170.9994 / 2.76	5.225e4	2.77	170.9995	V	•	~	No Match	0.0	C7H5N2NaS	N/A	74.458	V				E.
	402	R 10000x	890.6733 / 5.47	4.678e4	5.48	890.6733	V	•	~	No Match	0.0	C25H14I3Na3S4	N/A	99.445	V	-			
	313	R 10000x	407.0012 / 2.76	2.964e4	2.77	407.0014	1	•	~	No Match	0.0	C16H12N2O7S2	N/A	96.180	1				
	373	R 10000x	582.8543 / 4.87	1.664e4	4.87	582.8546			~	No Match	0.0	C22H3INa2O9	N/A	92.544	V	_			
	73	R 10000x	197.9867 / 0.53	1.225e4	0.55	197.9865	V	•		No Match	0.0	C3H4N3Na3O3	N/A	63.922	V	-			
	401	R 10000x	848.6628 / 5.64	1.205e4	5.64	848.6629		•	~	No Match	0.0	C15H20I4Na2S3	N/A	98.088		_			
	403	R 10000x	908.6835 / 5.36	1.143e4	5.36	908.6836		•	~	No Match	0.0	C24H4I3N4Na3O7	N/A	96.518		_			
	85	R 10000x	206.9994 / 3.31	1.14/e3	3.32	205.9988		-	~	No Acquired MS	N/A	C3H3N6Na3O	N/A	94.883	V	-			
	10	R 10000x	155.9883 / 0.53	9.352e2	0.55	155.9882				No Acquired MS	N/A	C/H4NNa5	N/A	53,499		-			
	240	R 10000x	341.1090 / 2.67	6.620+2	2.20	200.0022		-	~	No Acquired MS	N/A	CI2HIDN8NaU3	N/A	91.040		-6			
		R 10000X	200.00207 3.31	0.02062	5.52	200.0033	nim	-		No Acquired Mis	N/A	CSHONSINASOS	N/A	00.110	1000	-			*
	ΛA	Manual Integr	ation 🔝												View	v	• Optio	ns 🔹 🗖	\mathbb{Z}
	sugar - 83	34.6480 / 5.02 (Unkn	own) 834.6380 neg 0	2_sugar 1.wi	iff2), (sample I	ndex: 2)	100	^{0%}]			_		_ 1	00%]					
Control —	Area: N/A	, Height N/A, KI: N/	4 min		XIC) u	50	0%				TOF-MS	of 1.0	50% -				MS/MS	3
Control		1 2	3 4 🕈	6 7	8 9	~ %		19/)%	0%					
			Time, mi	n				//0	0.1 0	.2 0.3 0.4	0.5 0.6	0.7 0.8 0.9		0.0	1 0.2	0.3 0.	.4 0.5 0.6	0.7 0.8 0.	9
	Peak D	etails				- *	Formula	Finder Re	sults —				Library	Search Result	5				- @
	Precurso	or m/z Retention Tin	ne (min) Ion Ratio				Name	e Form	ula Se	ore m/z (Da)	Error (ppm)) Error MSMS (ppm)	I Nan	ne CAS#	Formula	MW (Da	a) Fit Rev.	Fit Purity CE (aV)
	834.648	N/A	N/A																
	R 10000	. 934 6490 / 5 03 //	lalua ana) 834 63 - a a a	04 and 1	(D) (an angle Ia	days 20 Cara	3		04		(100 1000)	6	5. U		04 and 1	:#2 TDA	TOT MEMO (EO	1000\ 6 m E 020 m	A
	Area: 4.05	51e6, Height: 1.163e6	i, RT: 5.03 min	04_red 1.wi		uex: 2) Spe	1009	muyes n %₁	leg 04_re	0 1.WIT2 (OF MS)	(100 - 1000)		Precursor: 8	34.6 Da, +1	04_red 1.wi	102IDA	TOP INSINS (50		
Sample –			5.0	03		/				834.	6481 835.6							662.7452	2
e ampre		1 2	3 4 🕈	6 7	8 9	- 1	05	832	833	834 835	836	837 838	U	100	200 3	300 4	00 500	600 700 80	00
	1		Time, mir	ı						Mass/C	harge, Da					Mas	ss/Charge, Da	-	
	Peak D	etails	10 March 15 March 19				Formula Fi	inder Resi	ults		152 Za a	<u> </u>	 Library Se 	earch Results		- 19-27-18-	V 19455 - 485 - 4 85		G
	Precurso	or m/z Retention Tin	ne (min) Ion Ratio				Name	Formu	ıla Sc	ore m/z (Da)	Error (ppm)	Error MSMS (ppm)	Name	e CAS# I	Formula	MW (Da)	Fit Rev. F	it Purity CE (eV)
	834.048	5.03	N/A					C20H8I4	405 94.	a 834.64781 C	1.3	1							
	<u> </u>						_	_	_							_			
Data Acquisition						_			_				_		Start		Stop	Save	
MS															Stdit		100	Sauce	

Sample was diluted with water/sugar solution (10.000x)

to simulate dissolved cake icing

Review of Formula Finding Results in SCIEX OS Software

Evaluation of TOF-MS and MS/MS Error and ChemSpider Hit Count

🗘 - Analytics 🔷 🖄	b.															9	🕜 Offlir	ie	? = @ >
									Pr	oject: AS artificial fo	od dyes Pr	rojects 🔹 Resu	ilts	* Repo	rting	👻 Vi	ews	Process Met	hod 🔹 🗙
Samples Components and Groups	[MQ4] Peak	k Review (Untitled)																	
Options 👻	0								Connella	Terror and Arrest			"o						
R 10000x				1	-		r - 1		aampie	туре 🗸 🛛 Ассе	eptance 🔹			• • • • • • • • • • • • • • • • • • •		1 Kal 🖬		iore 🔹	
Y 10000x	Index	Sample Name	Component Name	Area	Retention	Found	Used	Library Confi	Form Confi	Library Hit	Library	Formula Finder Results	Area	Formula	Non-Tar				Â
BI 10000×				1.000	lime	At Mass					Score		Ratio of	Finder Sc	Peak				
Br 10000x	▶ 400	R 10000x	834.6480 / 5.02	4.051e6	5.03	834,6481		٠	11 A	No Match	0.0	C20H8I4O5	N/A	94.470					
E sugar	384	R 10000x	708.7515 / 4.91	2.790e5	4.91	708.7515	V	•	~	No Match	0.0	C20H9I3O5	N/A	93.441	V				
	86	R 10000x	206.9994 / 2.76	5.477e4	2.77	206.9994	V	•	~	No Match	0.0	C10H5N2NaS	N/A	73.708	V				-
	37	R 10000x	170.9994 / 2.76	5.225e4	2.77	170.9995		•	~	No Match	0.0	C7H5N2NaS	N/A	74.458	V	-			
	402	R 10000x	890.6733 / 5.47	4.678e4	5.48	890.6733	V	•	~	No Match	0.0	C25H14I3Na3S4	N/A	99.445	V				
	313	R 10000x	407.0012 / 2.76	2.964e4	2.77	407.0014	V	•	~	No Match	0.0	C16H12N2O7S2	N/A	96.180	V	-			
	373	R 10000x	582.8543 / 4.87	1.664e4	4.87	582.8546	V	•	~	No Match	0.0	C22H3INa2O9	N/A	92.544	V	-			
	/3	R 10000x	197.986770.53	1.225e4	0.55	197.9865		•	-	No Match	0.0	C3H4N3Na3O3	N/A	63.922	V				
	401	R 10000x	848.6628 / 5.64	1.205e4	5.64	848.6629		•	~	No Match	0.0	C15H20I4Na2S3	N/A	98.088					
	403	R 10000x	908.6835 / 5.36	1.143e4	5.36	908.6836		•	~	No Match	0.0	C24H4I3N4Na3O/	N/A	96.518		-			
	85	R 10000x	206.9994 / 3.31	1.14/e3	3.32	206.9988		-	~	No Acquired MS	N/A	C3H3N6Na3O	N/A	94.883		-			
	10	R 10000x	155.9883 / 0.53	9.352e2	0.55	155.9882		-	A	No Acquired MS	N/A	C/H4NNa5	N/A	53,499		-			
	240	R 10000x	341.1090/2.0/	6.620+2	2.20	200.0022		-	~	No Acquired MS	N/A	CI2HIDN8NaU3	N/A	91.040		-0.			
		R 10000X	200.002073.31	0.02062	5.52	200.0033	1000	-		No Acquired Mis	N/A	CSHONSINASUS	N/A	00.110	1000	-			•
	ΛA	Manual Integr	ation												View	v	• Optio	ns 🔹 🗖	\mathbb{X}
	Spectrum 10 (38: 2 30) (38: 2 30) (39: 2 30)	from dyes neg 04_re 00% 80% 60% 40%	d 1.wiff2 (sample 2) - R	10000x, Exp	riment 1, -IDA	TOF MS (100	0 - 1000)	from 5.02	21 to 5.04	48 min 834.6481				ink	to	Ch		Spide	or
	% Int	20% -									8	335.6514	836.	6542	ιΟ	U	Iem,	Spide	
Formula	▲ Formula	832.0	832.5	833.0	833.5		834.0		834.5	835.0 Mass/	835. /Charge, Da	5 836.0	836.5	837	.0	837.5	838.0	838.5	
		Name	Formula S	icore m/z	(Da) Error	(ppm) Er	ror MSM	IS (ppm)	Hit C	punt									6
			C20H8I4O5 94	1.5 834.6	4781 0.3	1		41.4	5										
with 5 Hits		N	C8H11I4N4Na3O6 94	.4 834.6	478 0.3	1			0										
		N	C15HI3N6Na2O7S 93	1.7 834.6	4844 0.5	1			0										
			C21H12I4S2 93	1.6 834.6	4868 0.7	0.5			0										
			C1/H10/MN/M32OS 02	834.6 1.8 834.6	4775 0.4 <u>477 0.4</u>	1.2			0										v
	L																		
Data Acquisition Ms															Start	v	Stop	Save	A

Review of ChemSpider Results in SCIEX OS Software

Automatic In-silico Fragmentation of Structure Found in ChemSpider

Tentative identification of Erythrosine in **RED** food color

Examples

Three Isomers Analysis by MRM^{HR}

3 compounds with same formula but separated by LC conditions

38	1039	Methabenzthiazuron	Bayern-LC-Mix	18691-97-9	C10H11N3OS	222.06956	220.05501
66	2618	Benfuracarb (Carbofuran)	Bayern-LC-Mix	1563-66-2	C12H15NO3	222.11247	220.09792
391	978	Acetamiprid	SuMS-Mix 1	135410-20-7	C10H11CIN4	223.0745	221.05995
42	1219	Monocrotophos	SuMS-Mix 1	6923-22-4	C7H14NO5P	224.06824	222.05368
445	909	Mepanipyrim	SuMS-Mix 2	110235-47-7	C14H13N3	224.11822	222.10367
338	493	Mevinphos	Bayern-LC-Mix	7786-34-7	C7H13O6P	225.05225	223.0377
447	473	Methiocarb	SuMS-Mix 2	2032-65-7	C11H15NO2S	226.08963	224.07507
351	949	Cyprodinil	Bayern-GC-Mix	121552-61-2	C14H15N3	226.13387	224.11932
196	609	Prometon	Bayern-LC-Mix	1610-18-0	C10H19N5O	226.16624	224.15168
198	1118	Terbumeton	Bayern-GC-Mix	33693-04-8	C10H19N5O	226.16624	224.15168
1106	2211	Metyrapone	SuMS-Mix 3	54-36-4	C14H14N2O	227.11789	225.10334
195	151	Ametryn	Bayern-GC-Mix	834-12-8	C9H17N5S	228.12774	226.11319
41	490	Metoxuron	Bayern-LC-Mix	19937-59-8	C10H13CIN2O2	229.07383	227.05928
24	332	Dimethoate	Bavern-GC-Mix	60-51-5	C5H12NO3PS2	230.0069	227.99235
	6: 3	Propazine	Bayern-GC-Mix	139-40-2	C9H16CIN5	230.1167	228.10215
53	123	Sebuthylazine	Bayern-GC-Mix	7286-69-3	C9H16CIN5	230.1167	228.10215
58	65	terbuthylazine	Bayern-GC-Mix	5915-41-3	C9H16CIN5	230.1167	228.10215
407	2748	Oxydemeton-methyl (Demeton-S-methyl)	Sums-mix 2	919-86-8	C6H15O3PS2	231.0273	229.01275
176	1116	Asulam	SuMS-Mix 1	3337-71-1	C8H10N2O4S	231.04341	229.02885
132	516	Naproxen	Arzneimittel-Mix1	22204-53-1	C14H14O3	231.10157	229.08702
378	617	Propyphenazone	Arzneimittel-Mix1	479-92-5	C14H18N2O	231.14919	229.13464
591	765	N-Formyl-4-aminoantipyrin	Arzneimittel-Mix1	1672-58-8	C12H13N3O2	232.10805	230.0935
25	855	Diuron	Bayern-LC-Mix	330-54-1	C9H10Cl2N2O	233.02429	231.00974
264	1619	Fluometuron	SuMS-Mix 1	2164-17-2	C10H11F3N2O	233.08962	231.07507
001							
331	842	Sulbactam	SuMS-Mix 3	68373-14-8	C8H11NO5S	234.04307	232.02852
840	842 3121	Sulbactam Methylphenidate hydrochloride C II (Ritalin) in Lösung	SuMS-Mix 3 Für AZM-Std	68373-14-8 298-59-9	C8H11NO5S C14H19NO2	234.04307 234.14886	232.02852 232.1343

Sebuthylazine – MSMS Spectra

Propazine 139-40-2 C9H16CIN5 229.7127

100.0 0.0

Suspect screening: water samples

- Cocaine human metabolite: Benzoylecgonine
- Caffeine
- Sildenafil (viagra)

Water samples from lakes, rivers, drinking water and a few other sources around the world.

Benzoylecgonine in Different Water Samples

BE and other drug metabolites are detected in rivers in major cities, © 2015 AB Sciex concentration can be used to estimate consumption.

33

SCIE

Caffeine in Different Water Samples

34

© 2015 AB Sciex human activity, i.e. artificial sweetener SCIEX

Sildenafil in Different Water Samples

Concentration of sildenafil detected were very low (<10 ppt), one exception! SCIEX

Data of Holy Water (Direct Injection 100 µL)

Compound	µg/L	LOQ (µg/L)
Acetaminophen	9.1	0.010
Benzoylecgonine (metabolite of cocaine)	0.47	0.001
Caffeine	38	0.010
Carbamazepine	0.21	< 0.001
Codeine	0.050	0.001
Dextromethorphan	0.021	0.001
Diazepam	0.003	0.001
EDDP (metabolite of methadone)	0.001	0.001
Erythromycin	1.7	0.050
Morphine	0.15	0.005
Sildenafil	0.015	0.005
Thiabendazole	0.016	< 0.001

Summary

- The X500R technology and performance
 - Technology to achieve high mass resolution (>30,000 resolution)
 - N-geometry.
 - Detector tilter.
 - Space-velocity correlation focusing.
 - Technology to achieve high mass accuracy(<1ppm accuracy for m/z>50amu)
 - Thermal stabilization.
 - Simplified accelerator with no puller.

X500R scan modes

- IDA for suspect and untargeted screening.
- SWATH for suspect and untargeted screening.
- MRM^{HR} for targeted quantification and confirmation.

Application examples

- Unknown food dye compound
- MRM^{HR} identification of identical m/z isomers
- Detection of human activity compounds in various water samples

AB Sciex is doing business as SCIEX.

For Research Use Only. Not for use in diagnostic procedures.

© 2016 AB Sciex. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license.

Answers for Science. Knowledge for Life.[™]

