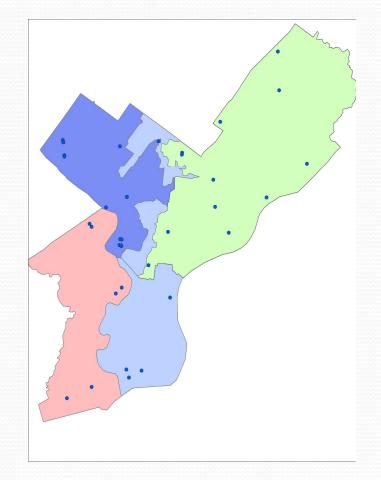
Effective Use of Real Time Water Quality Data in an Early Warning System

Data Management, Data Analysis, and Compliance Considerations

> Tyler Bradley Philadelphia Water Scientific and Regulatory Affairs



Purpose

- Explore data management and analysis of an online water quality monitoring (OWQM) system
- Identify potential challenges in using this data for compliance monitoring
- Majority of drinking water distribution system online monitoring are not designed with compliance monitoring as a priority or even as a consideration

Overview of PW's OWQM System

- 36 OWQM sites throughout the city
- Up to 9 parameters at any given site: primary and redundant total chlorine, conductivity, oxidation reduction potential (ORP), pH, pressure, temperature, turbidity, UV254 (measure of organic carbon)
- 2 minute data generation

Map of Philadelphia's OWQM Sites

OWQM Tools used for Data Collection, Management, and Analysis

> ClearSCADA Dashboard Bluebox WISKI®

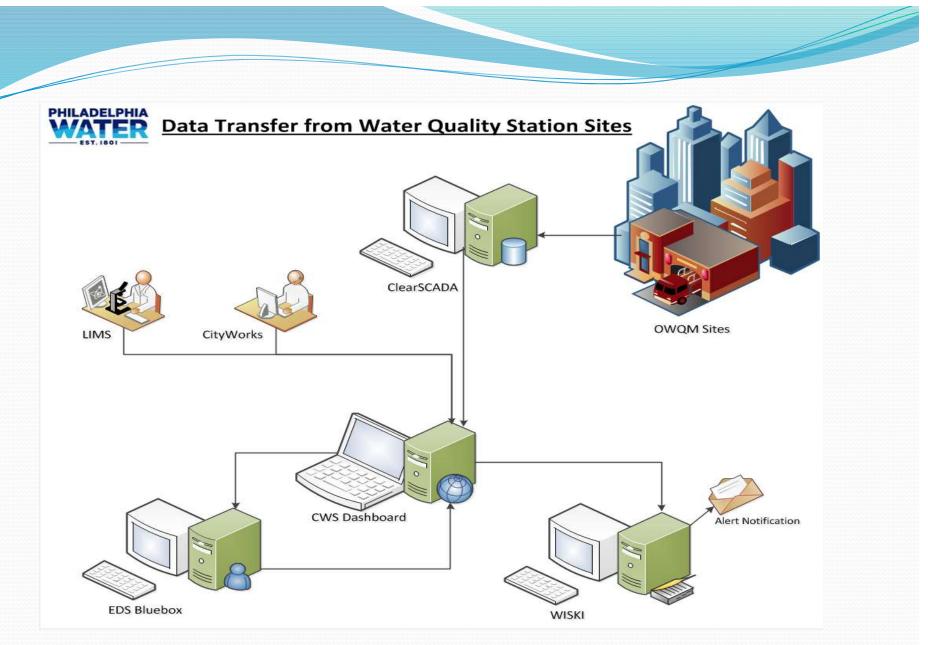
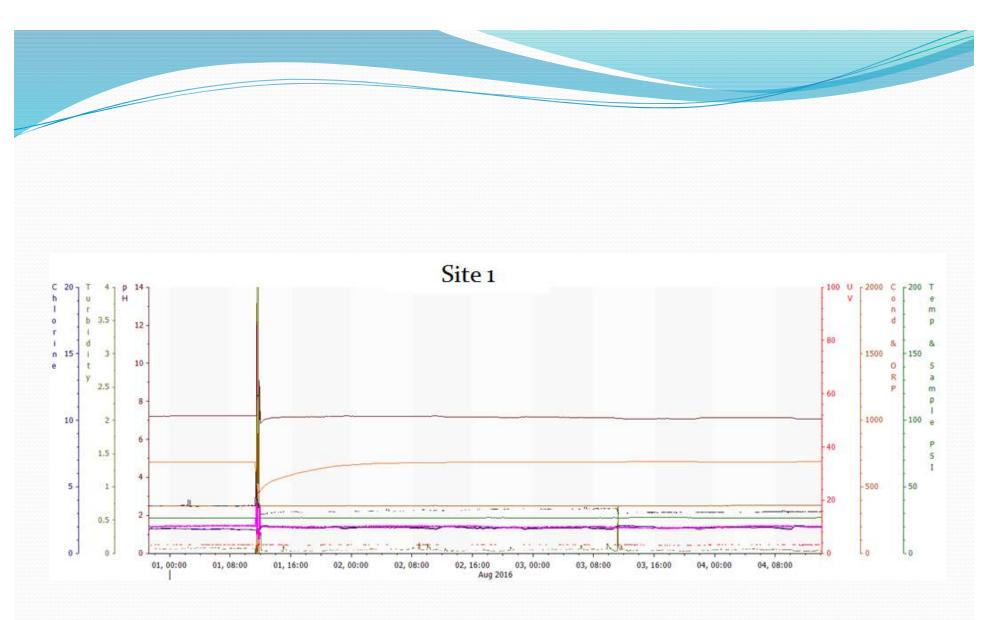
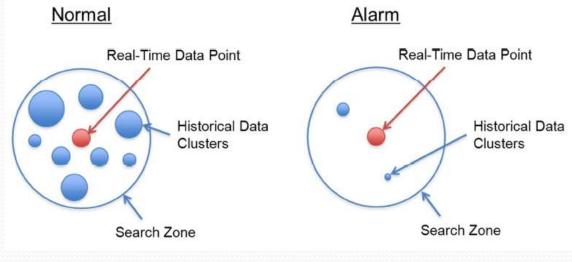



Diagram of PW's OWQM data transfer process from Sites to data management software

ClearSCADA


- Produces raw data from all sites at 5-min, 10min, or longer time intervals
- Used mostly to monitor sensor behavior
- Additional parameter: sample flow (gpm) used to detect if sensor is out of use

Time Series graph generated in ClearSCADA from an OWQM station

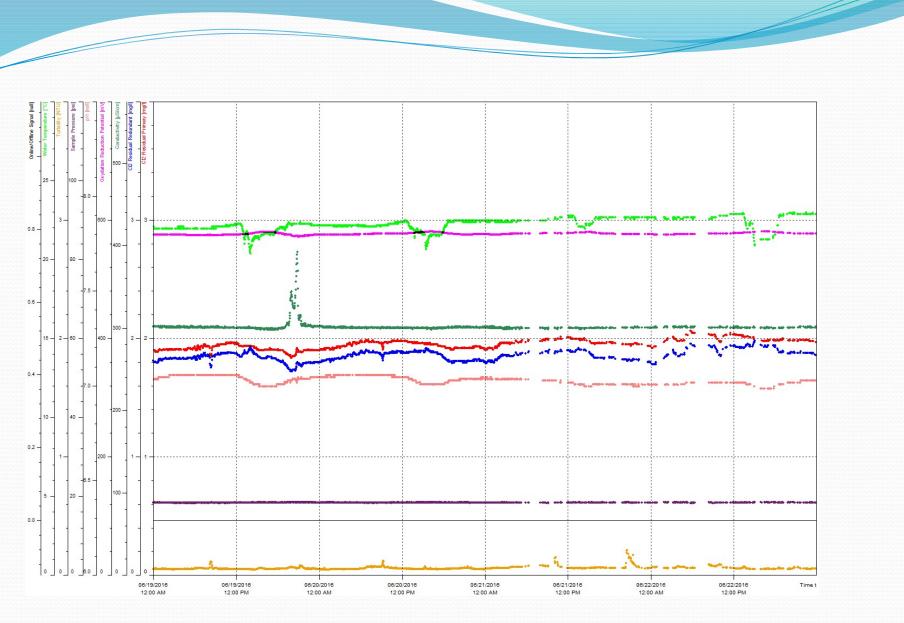
BlueBox

- Event detection system (EDS)
- Data points are grouped into sub-models
- Clustering analysis performed on sub-models
- Alerts are generated using density thresholds within this clustering method

Visual Representation of How BlueBox Generates Alarms

Example of a BlueBox Alarm Situation

BlueBox Alarm in Response to a Water Main Break

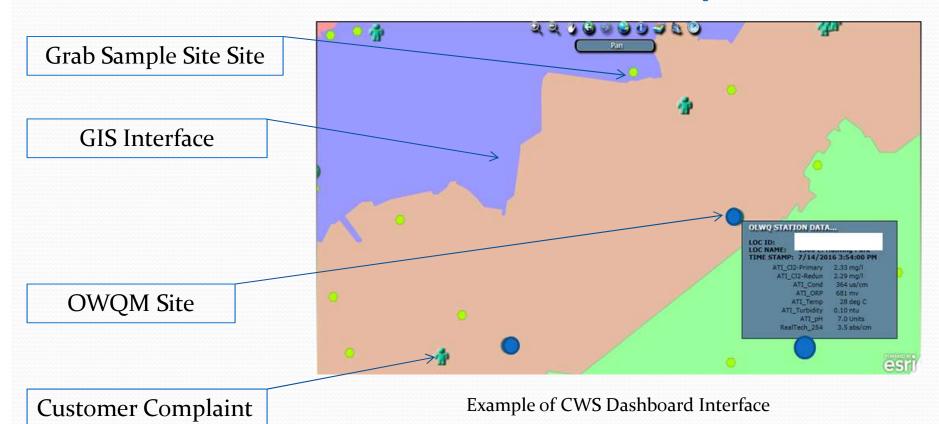

WISKI[®]

 Water Information Systems Kisters, is our data management system

Validation steps

Variability in graphical parameters

Monitored daily



Example of a WISKI Graph Covering 1 Week

Dashboard

- Incorporates data from several sources:
 - EDS (BlueBox)
 - ClearSCADA/WISKI[®]
 - Laboratory Information Management System (LIMS) – basic lab data
 - Customer complaints
 - ArcGIS

Dashboard - Example

Challenges Faced in OWQM Data Analysis and Management

System Integration

- In-house program was designed for data transfer
- Different groups manage the different steps in the process:
 - Can create issues when diagnosing and remediating software issues
 - Can make coordinating changes and updates difficult
 - Large amount of staff time required

Event Detection System

- EDS in a historical data management world
 - Finding the right EDS for the system
 - Sophisticated statistical analysis
- Staff Time
 - Every Site/Model is different & can change
 - Reviewing and classifying alerts

Overall Stats							
Total Time (Hours)	673						
Avg Time Per Session (HH:MM)	1:14						
Avg Time Per Day (HH:MM)	0:35						

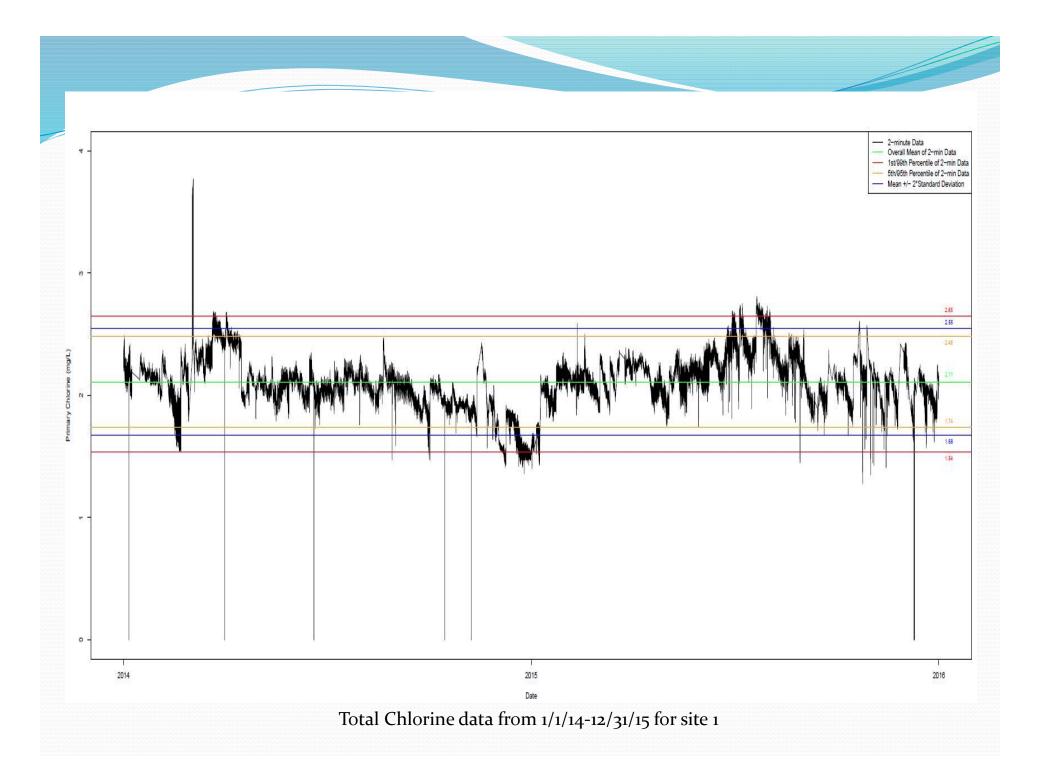
Hourly Work Load for PW's Event Detection System

Control Limits

Control Limit Selection

- Continually trying to improve and optimize
- Follows Umberg and Allgeier, 2016
- Currently based on general knowledge
- Percentiles to develop control limits for each individual site
- If percentile is outside of the range of existing control limits, what are other options?

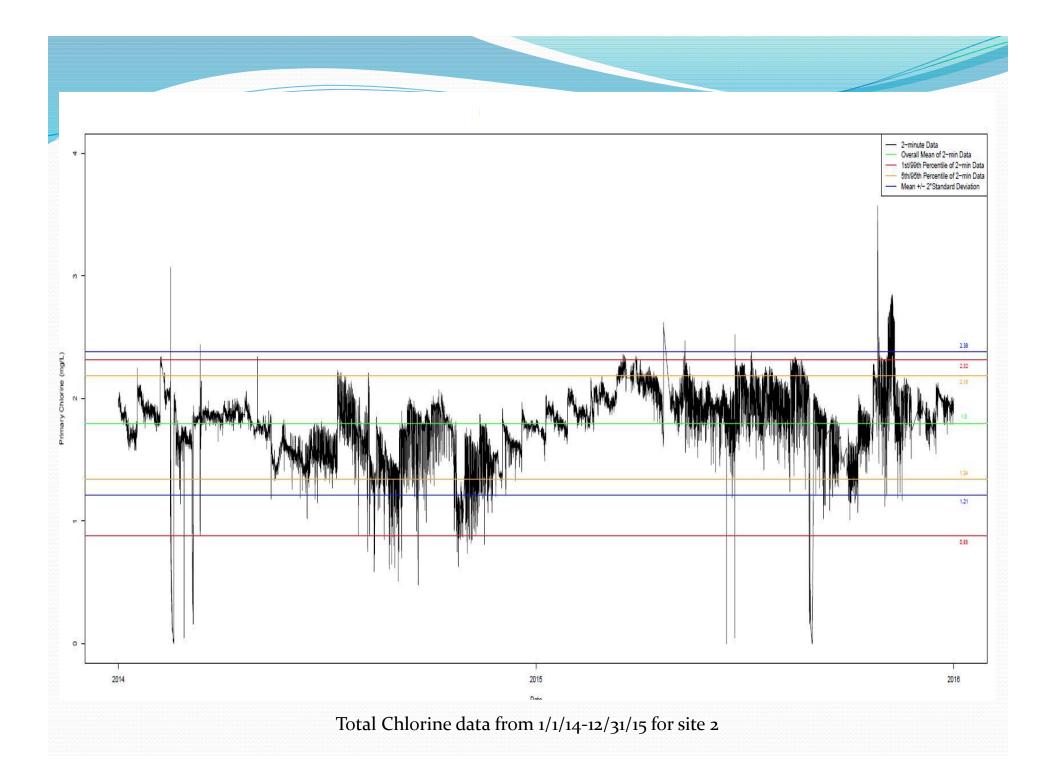
Existing Control Limits


OWQM Parameter	Low Set Point	High Set Point	Units
Primary Total Chlorine	1	3	mg/L
Redundant Total Chlorine	1	3	mg/L
Conductivity	100	1000	µS/cm
Oxidation Reduction Potential (ORP)	100	1000	mV
pН	6.8	7.5	_
Pressure	5	40	PSI
Temperature	5	35	°C
Turbidity	Ο	0.5	NTU
UV254	0.02	0.1	A/cm
Flow	0.1	1	gpm

Existing Control Limits for all Sites

Control Limits - Percentiles

	Site 1		
OWQM Parameter	Low Set Point	High Set Point	Units
Primary Total Chlorine	1.54	2.65	mg/L
Redundant Total Chlorine	1.48	2.62	mg/L
Conductivity	266	719	μS/cm
Oxidation Reduction Potential (ORP)	250	712	mV
pН	6.93	7.44	-
Pressure	17.68	35.02	PSI
Temperature	6.72	26.67	°C
Turbidity	0.007	0.11	NTU
UV254	0.021	0.043	A/cm
Flow	0.1	1	gpm


Proposed Control Limits for Site 1 based on Percentiles

Control Limits - Percentiles

Site 2						
OWQM Parameter	Low Set Point	High Set Point	Units			
Primary Total Chlorine	o.88	2.32	mg/L			
Redundant Total Chlorine	0.69	2.28	mg/L			
Conductivity	256	743	μS/cm			
Oxidation Reduction Potential (ORP)	454	682	mV			
pН	6.83	7.41	_			
Pressure	39.51	49.9	PSI			
Temperature	6.31	29.17	°C			
Turbidity	0.018	1.004	NTU			
UV254	0.023	0.043	A/cm			
Flow	0.1	1	gpm			

Proposed Control Limits for Site 2 based on Percentiles

Percentiles Outside of Existing Range

Site	Parameter	ıst Percentile	5th Percentile	95th Percentile	99th Percentile	Number of Data Points
2	Primary Chlorine	0.88	1.34	2.19	2.32	388885
2	Redundant Chlorine	0.69	1.34	2.14	2.28	351021
2	Conductivity	256	284	633	743	400460
2	ORP	454	617	676	682	341074
2	pН	6.83	6.91	7.33	7.41	293016
2	Pressure	39.51	41.13	48.68	49.90	473280
2	Temperature	6.31	7.42	28.15	29.17	281378
2	Turbidity	0.018	0.034	0.427	1.004	453994
2	UV	0.0232	0.0247	0.0353	0.0430	427044

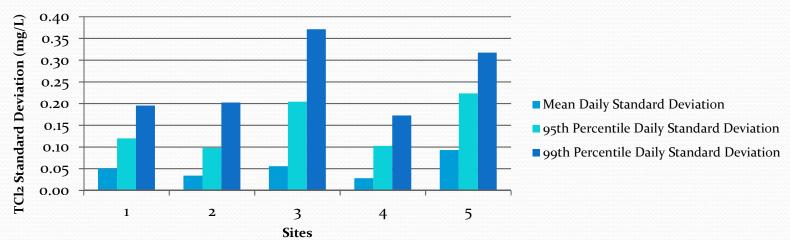
Percentiles of overall data for Site 2

Site	Parameter	Stat	ıst Percentile	5th Percentile	95th Percentile	99th Percentile	Number of Days Total	Number of Days with Data
2	Primary Chlorine	Daily Mean	1.06	1.38	2.14	2.28	729	709
2	Redundant Chlorine	Daily Mean	1.06	1.38	2.12	2.21	729	708
2	Conductivity	Daily Mean	260	284	606	691	729	714
2	ORP	Daily Mean	347	618	678	682	729	713
2	рН	Daily Mean	6.86	6.91	7.33	7.39	729	676
2	Pressure	Daily Mean	40.04	41.48	48.06	49.07	729	714
2	Temperature Daily N		6.61	7.43	28.08	28.85	729	713
2	Turbidity	Daily Mean	0.023	0.048	0.393	0.860	729	710
2	UV	Daily Mean	0.024	0.025	0.035	0.042	729	714

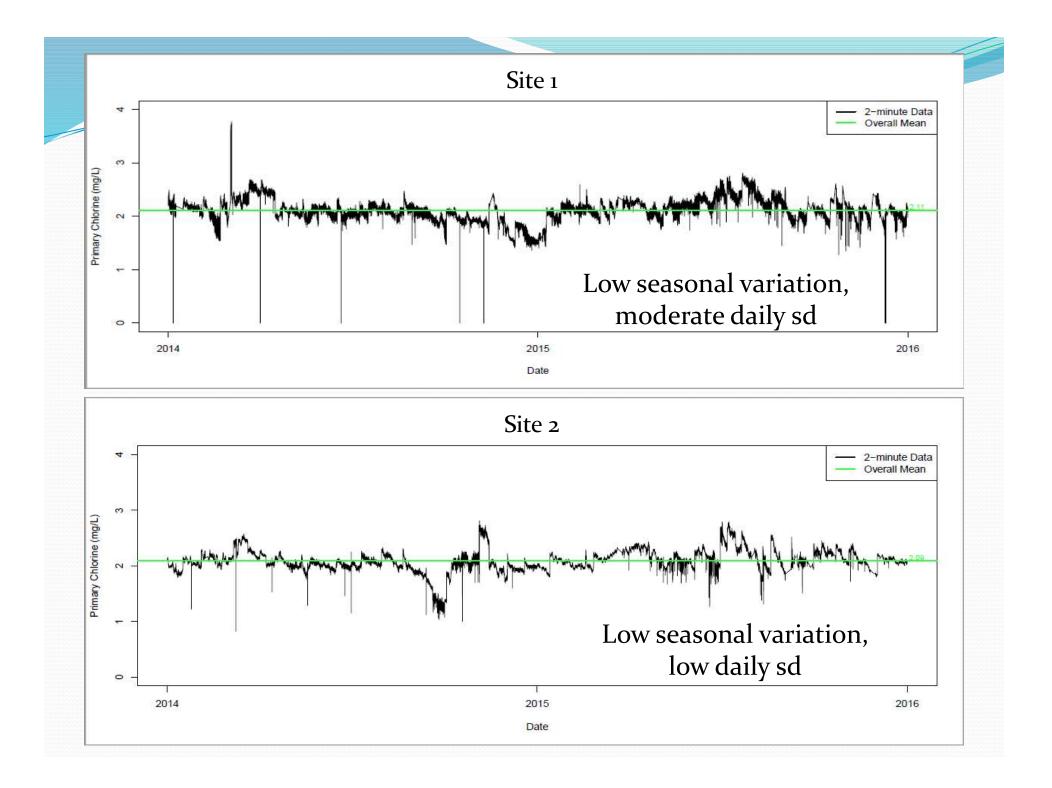
Percentiles of Daily Means for Site 2

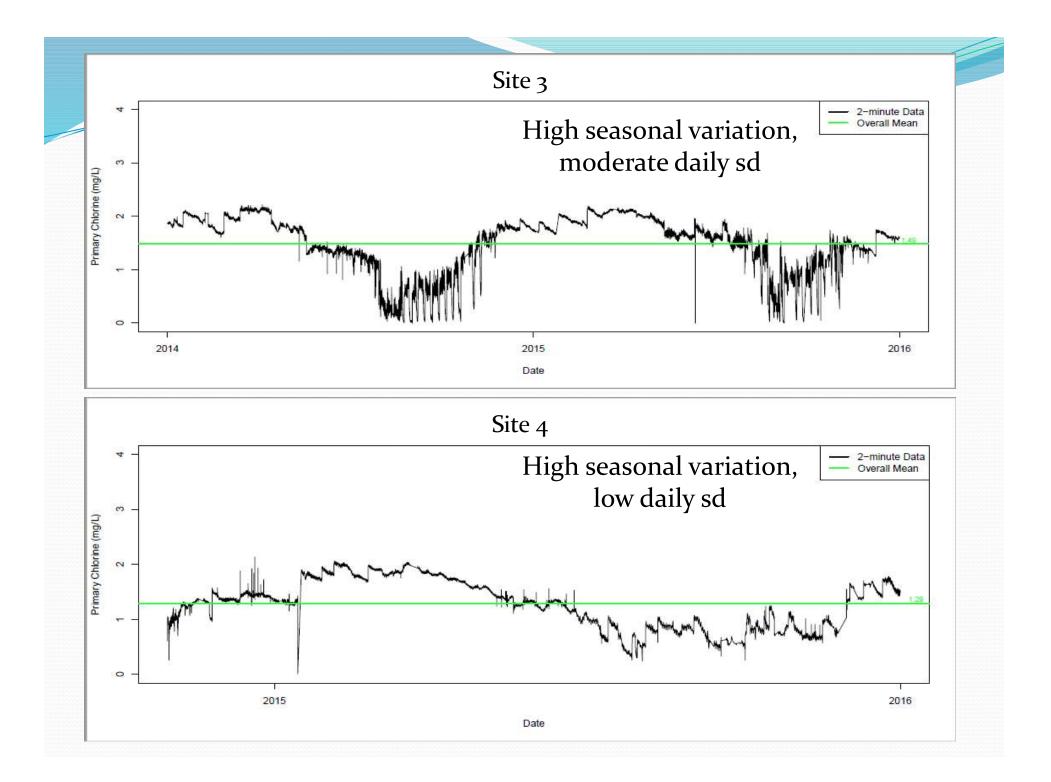
Control Limits - Percentiles

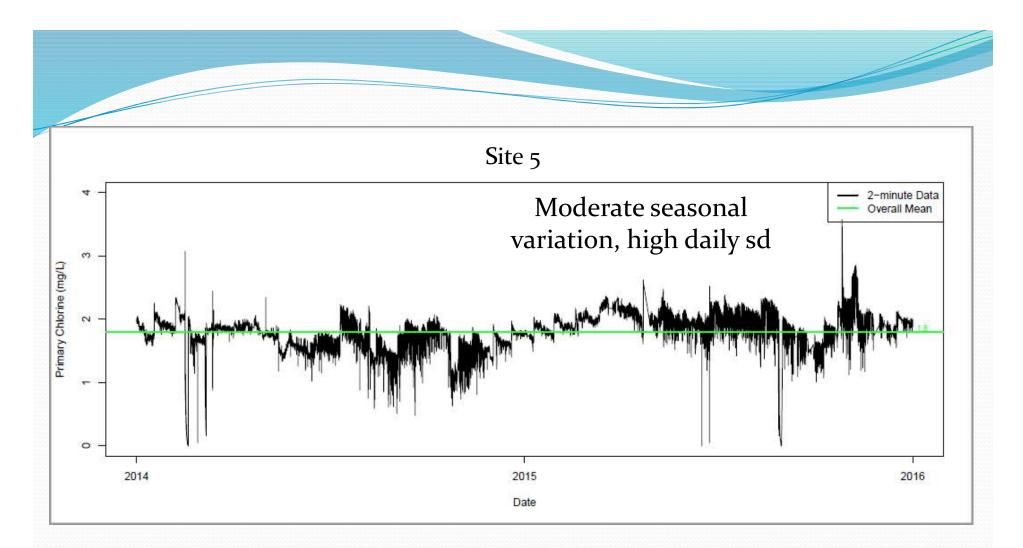
Site 2							
OWQM Parameter	Low Set Point	High Set Point	Units				
Primary Total Chlorine	1.06	2.32	mg/L				
Redundant Total Chlorine	1.06	2.28	mg/L				
Conductivity	256	743	μS/cm				
Oxidation Reduction Potential (ORP)	454	682	mV				
pН	6.83	7.41	_				
Pressure	39.51	49.9	PSI				
Temperature	6.31	29.17	°C				
Turbidity	0.018	0.427	NTU				
UV254	0.023	0.043	A/cm				
Flow	0.1	1	gpm				


Revised proposed control limits for Site 2

Precision and Accuracy of Data


Precision


- Def The measure of agreement among repeated measurements of the same parameter and same sensor under substantially similar conditions
- Hard to quantify in a complex water matrix
- Compare daily standard deviations of data from different sites



Primary Chlorine Daily Standard Deviation

Site Comparisons of Daily Standard Deviations

Graphical representation of Total Chlorine data points from 1/1/14-12/31/15 for 5 different sites showing varying degrees of sensor precision

Accuracy

- Def The degree of difference between the measured and true values
- Chlorine
 - User-defined acceptance range of +/- 0.20 mg/L
 - Lab samples have an acceptance range of +/- 10%
- Bias Online Sensors show a slight bias to be less than grab samples

Accuracy and Bias – June 2016

Online Sensor Accuracy Compared to Grab Sample Results - June 2016

	# of grab samples total	san cori	of grab nples with responding nline data	v diffe	samples vith rence > mg/L	% of samples with difference >0.2 mg/L				with difference > combined	
	480		442		232	53%		63		14%	
	Number of Samples Total		# of gra samples v correspon online da	vith ding	betwee Sampl	ge Bias en Grab es and Sensors	Acc Onlin	ge Percent uracy of e Values to Samples	bet	erage Difference ween Grab Data l Online Sensors (mg/L)	
480			442		8	3%		89%		0.18	

Online Sensor Accuracy for June 2016

Should Real Time Water Quality Data be Used for Compliance Monitoring?

Considerations

- Extremely large amounts of data 720 data points per parameter per site per day
- Chain of custody for online data?
- Framework of regulation sensor, data transfer, results, or overall system?
- Calibration issues

Considerations

- Accuracy/Precision Lab Samples vs Online Sensors
- Initial purpose of OWQM sensors
- Discourage systems from establishing OWQM
- Process Control vs Process Management

Conclusions

- Acceptable for early warning and system knowledge
- Precision and accuracy must be continuously addressed
- Set points potentially an effective alternative or companion to complicated warning systems
- Compliance may not be a good use for OWQM

For More Information

 Umberg, Katie, and Steven Allgeier. "Parameter Set Points: An Effective Solution for Real-Time Data Analysis." *Journal AWWA* 108.1 (2016): E60-66. *American Water Works Association*. Jan. 2016. Web.

Questions?