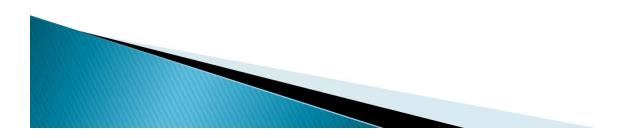


The Analysis of Polychlorinated Dibenzo-p-dioxins, Furans and Biphenyls in River Sediment with Automated Extraction and Clean Up

Ruud Addink and Matt Falkenstein Toxic Report Watertown MA


Introduction

Stockholm Convention on Persistent Organics Pollutants 2001.

Compounds of interest: polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs), and furans (PCDFs).

Known toxicity.

Strict environmental regulations in force in most countries.

PCBs

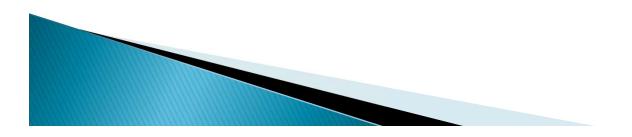
PCBs were intentionally produced 1920-1970s.

Used in capacitators and transformers, also as flame retardants, hydraulic fluids, sealants, and vacuum pump fluids.

Total production estimated worldwide 1.5 million metric tons. Produced as Aroclor in North-America.

Levels are now dropping.

Still at significant concentrations to pose danger.

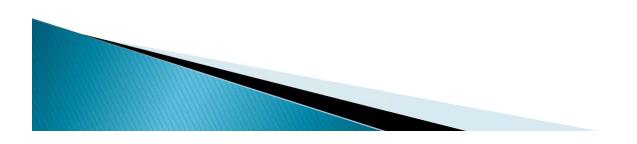

PCDD/Fs

PCDD/Fs are always unwanted byproducts.

PCDD/F sources: combustion, incineration, metallurgical industry, pulp and paper bleaching/ production; low natural background (Trace Chemistries of Fire).

Levels also dropping.

Still at significant concentrations to pose danger.



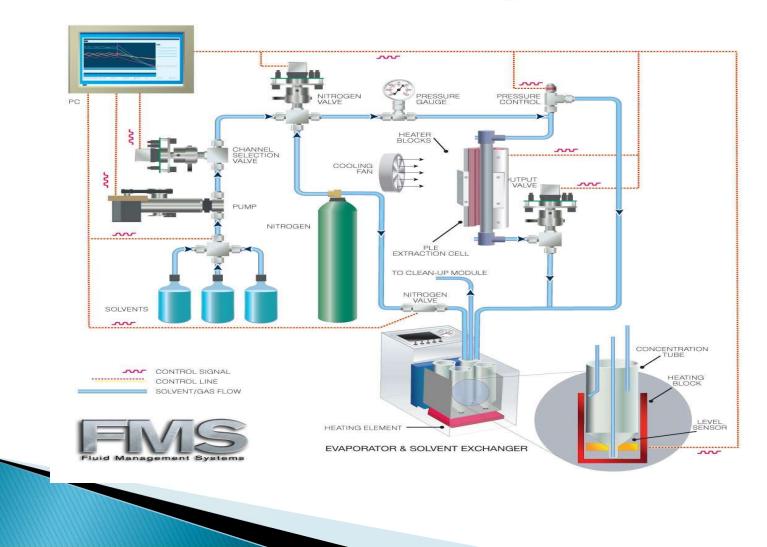
Health Effects

- •Endocrine disruptors.
- •Immune system.
- •Nervous system.
- •Reproductive functions.
- •Carcinogenic.
- •Chloracne.

•Main exposure (> 90%) is through dietary intake: meat, dairy, fish.

•Non-ortho and mono-ortho congeners (WHO-12) most toxic plus 17 laterally substituted PCDD/Fs.

Scope


- Low solubility in water and chemically inert.
- Resist environmental degradation.
- Both PCBs and PCDD/Fs accumulate in soil and river sediment.
- > Traditional extraction methods: up to 24-36 h Soxhlet and manual clean up.
- Manual methods are time-consuming; can have poor accuracy and reproducibility.
- Analyze 1 g river sediment for PCDD/Fs, PCBs with automated equipment.

Pressurized Liquid Extraction

PLE[®] Fast Extraction & Concentration System

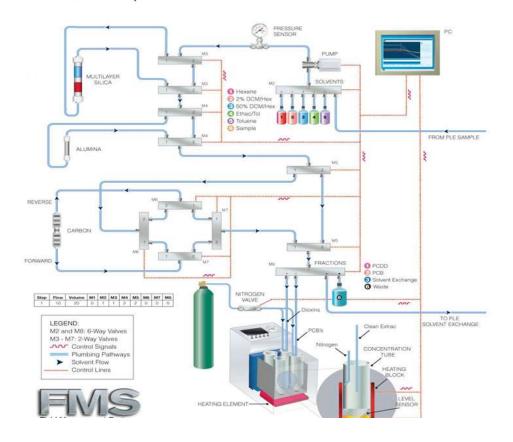
Extraction Procedure

- I g sample mixed with Hydromatrix[™] to dry, transferred to extraction cells
- ▶ Spiked with ¹³C PCDD/Fs and PCBs standards.
- ▶ Void volume filled with HydromatrixTM.
- Sample Cells filled with 50% mixture Hexane/Methylene Chloride.
- Cells pressurized to 1500 PSI and heated to 120 °C.
- Temperature held for 20 minutes.

Extraction cells cooled, flushed with solvent (50% cell volume), and nitrogen; collected in 250 mL tubes.

6 position evaporator

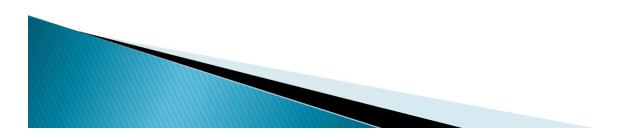
Toxic Reports SuperVap Evaporation


- ▶ System pre-heated to 45-60 °C.
- Extracts evaporated at stable temperature under 5-6 psi nitrogen.
- Solvent exchange with hexane to eliminate dichloromethane.
- Dichloromethane would interfere with subsequent sample clean up.
- Extracts reduced to a few mLs.

PowerPrep CleanUp System

Power - Prep™

System Characteristics


- Control module that pilots valve drive modules connected to a pump and pressure modules responsible for solvent flow in the valve module.
- Built in computer that does not need a stand-alone pc.
- Easy programming and software editing provides custom made sequences of events that drive the required solvent at the right place at the right moment.
- Low pressure (5-30 psi). Flow rates of up to 5-15 mL/min are used.

Clean Up (1)

- Jumbo Acidified Silica gel PCB-free column
- Silica Classical PCB-free multilayer Acid-Base-Neutral silica gel column
- Alumina PCB-free basic alumina column
- Carbon PCB-free carbon/celite column

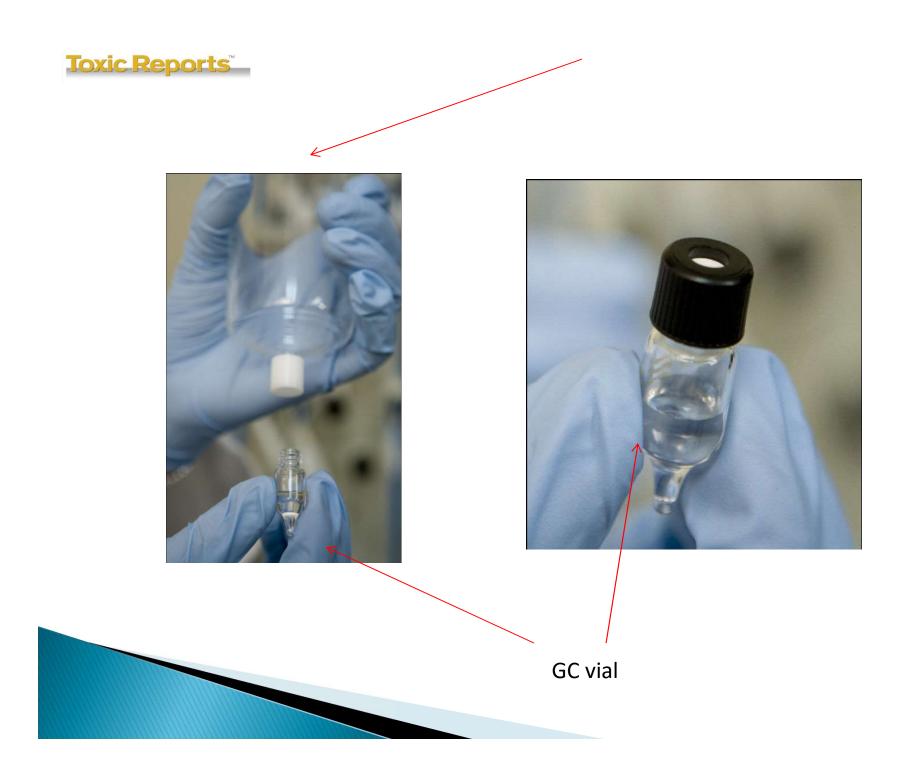
Clean Up (2)

- Standard 25-step program
- Install jumbo silica, classical ABN, alumina and carbon/celite columns
- Mixes used: hexane, 2%/98% dichloro methane/hexane, 50%/50% dichloromethane /hexane, 50%/50% ethylacetate/benzene, and toluene

Clean Up (3)

- Run conditioning steps 1-13 with columns in place
- Load sample (in hexane)
- Elute silica with 150 mLs hexane (waste)
- Elute alumina with 60 mLs 2%/98% DCM/ hexane (collect as F1; PCBs)
- Elute alumina with 120 mLs 50%/50% DCM/hexane (collect as F1; PCBs)
- Elute carbon with 4 mL 50%/50% ethyl-acetate/benzene (collect as F1; PCBs)
- Elute carbon with 75 mLs toluene (collect as F2; PCDD/F and co-planary PCBs)

SuperVap Evaporation


System pre-heated to 45-60 °C.

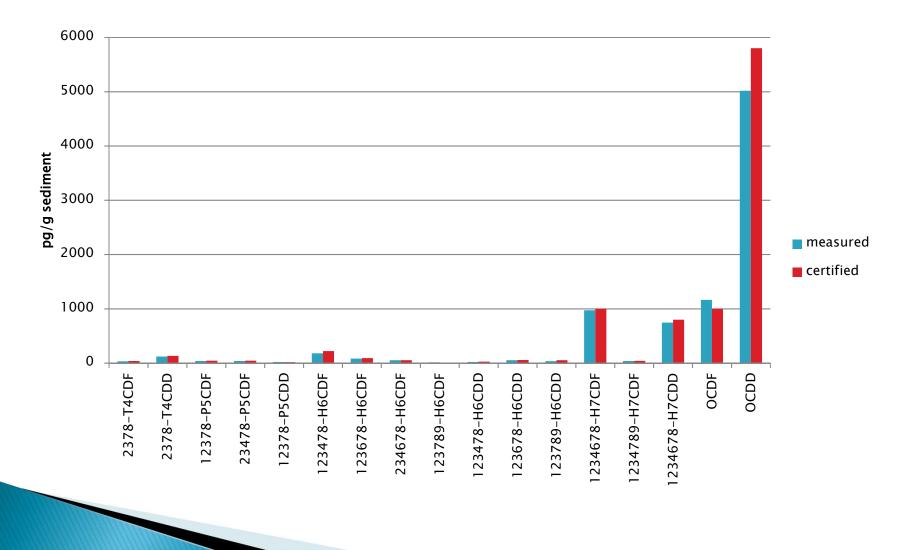
Samples evaporated at stable temperature under 5-6 psi nitrogen.

I mL extract vial transferred directly to connected GC vial.

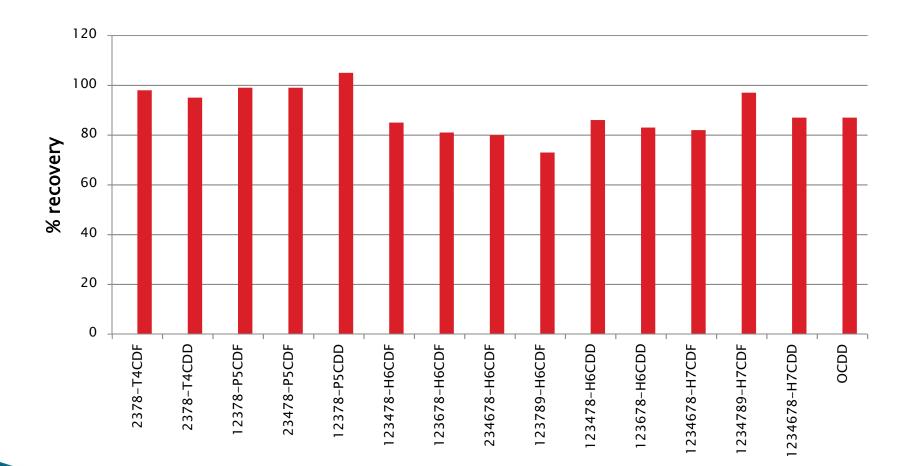
Recovery standards added (nonane/dodecane).

•Extract taken 10 uL volume with a gentle stream of nitrogen at ambient temperature.

24 position Vial Evaporator



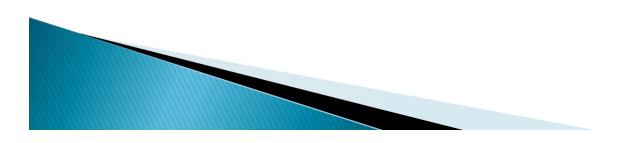
DFS HRGC/HRMS



NIST 1944 PCDD/Fs analysis (1)

NIST 1944 PCDD/Fs analysis (2)

NIST 1944 PCBs analysis


		native pg/g	NIST1944 pg/g	recoveries %
33'44'-T4CB	77	5714.03		104%
344'5-T4CB	81	307.57		98%
233'44'-P5CB	105	20895.78	24500± 12250	109%
2344'5-P5CB	114	1196.34		106%
23'44'5-P5CB	118	56443.83	58000 ± 29000	102%
2'344'5-P5CB	123	4514.92		106%
33'44'5-P5CB	126	206.71		125%
233'44'5-H6CB	156	4936.21	6520 ± 3260	109%
233'44'5'-H6CB	157	941.96		109%
23'44'55'-H6CB	167	2421.59		93%
33'44'55'-H6CB	169	31.58		124%
233'44'55'-H7CB	170	15553.43	22600 ± 11300	100%
22'344'55'-H7CB	180	47244.50	44300 ± 22150	99%
233'44'55'-H7CB	189	532.65		115%

Conclusions (1)

- Pressurized Liquid Extraction combined with PowerPrep clean up gives fast and reliable technique for extraction of PCDD/Fs and PCBs in sediments under the 1613 and 1668 methods.
- Up to six position PLE can extract samples in under one hour.
- When analyzing POPs with PLE and automated open multi- column chromatography clean up - silica, alumina, carbon, samples are ready for analysis.

Conclusions (2)

- Excellent recoveries are obtained and very good agreement is found between NIST certified PCDD/Fs-PCBs native reference values and data obtained in our laboratory.
- Same day sample processing and analysis (HRGC/HRMS or other techniques if desired) is now possible.

