Presented at the NEMC: August 9, 2016

Merits of EPA Method 1640:

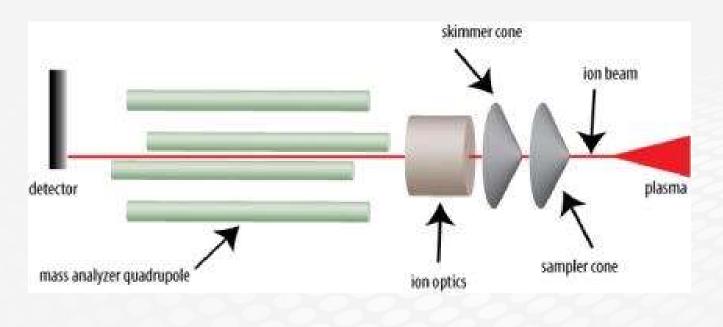
Preconcentration and matrix removal of seawaters for trace metals analysis with a ICP-QQQ-MS detection system

Tamas Ugrai Research Chemist Brooks Applied Labs

www.brooksapplied.com

Trace Metals in Seawater

Potential Sources Include: Industrial wastewater, urban stormwater, agricultural runoff, petroleum exploration, marine paints


Monitoring for <u>minor</u> changes in metals concentrations is critical to developing accurate environmental assessments or evaluating the effectiveness of various pollution control and remediation technologies

ICP-MS

The inductively coupled plasma – mass spectrometer (ICP-MS)

- Accurate and precise
- Right technology when used by trained personnel

Ambient Levels of Metals in Seawater and Typical ICP-MS Detection Limits

Element	Example <u>seawater</u> concentrations from CRMs (µg/L)	Typical BAL MDLs in <u>freshwater</u> (μg/L)
Ag	0.003	0.006
As	1.4	0.006
Ве	0.002	0.01
Cd	0.048	0.004
Со	0.05	0.004
Cr	0.2	0.025
Cu	1.6	0.022
Fe	0.6	0.28
Ni	1.2	0.023
Pb	0.01	0.005
Sb	0.14	0.01
Se	0.1	0.011
TI	0.01	0.013
V	2.6	0.012
Zn	0.2	0.12

Polyatomic Interferences

- Molecules that have the same nominal mass as the analyte of interest
- Potentially cause in highbiased data
- Potentially result in elevated method detection limits if the sample and interferant is diluted

Analyte	Potential Interferences
As ⁷⁵	⁴⁰ Ar ³⁵ Cl ⁺ , ³⁸ Ar ³⁷ Cl ⁺ , ²³ Na ¹² C ⁴⁰ Ar ⁺
Cr ⁵²	³⁵ Cl ¹⁶ O ¹ H ⁺
Co ⁵⁹	³⁶ Ar ²³ Na ⁺
Cu ⁶³	²³ Na ⁴⁰ Ca ⁺
V ⁵¹	³⁵ Cl ¹⁶ O+

Physical Interferences

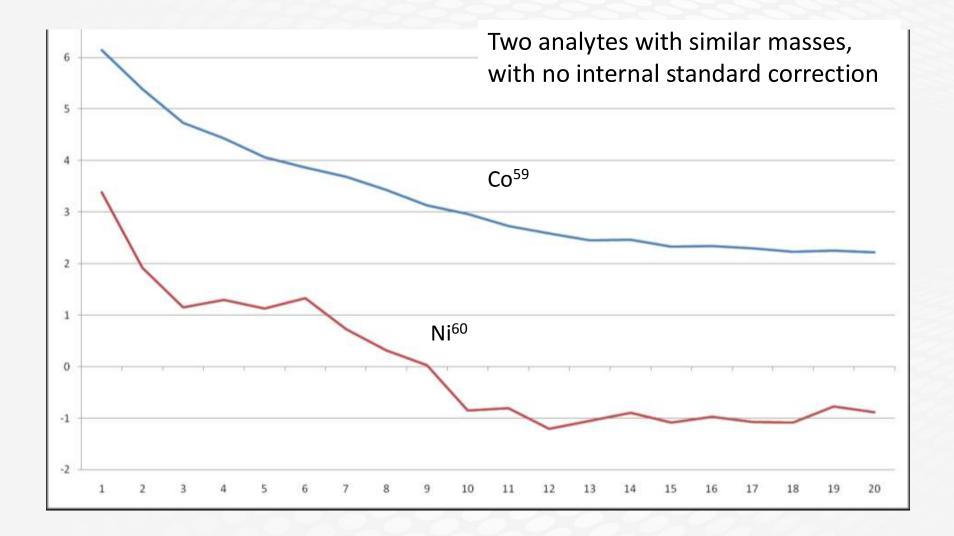
Seawater contains approximately 3% total dissolved solids (TDS), mainly in the form of sodium, magnesium, and chloride ions.


- These salts will rapidly deposit in and around the sampler and skimmer cones, as well as the ion optics, resulting in signal stability issues.
- Dilution of these interferences will cause an increase in detection limits.
- The elevated salt content also decreases the ionization efficiency of the plasma, causing reduced sensitivity.

Internal Standard Response (counts-per-second, CPS)										
	Sc	Ge	In	Tm						
DI water	889,432	582,996	1,952,339	1,904,518						
Natural Seawater	142,518	88,369	583,276	812,010						
Recovery (%)	16	15	30	43						

Instrument Degradation

Before



Example pictures of cones from an ICP-MS after 20 replicates of undiluted seawater analysis

Replicate Analyses Demonstrating Decreasing Response of Seawater

Resulting MDLs After Matrix Dilution

Element	Example <u>seawater</u> concentrations from CRMs (µg/L)	MDLs with Typical 50x Dilution ICP-MS (μg/L)	Est. MDLs with ICP-QQQ-MS using HMI (µg/L)
Ag	0.003	0.3	0.06
As	1.4	0.3	0.06
Ве	0.002	0.5	0.1
Cd	0.048	0.2	0.04
Со	0.05	0.2	0.04
Cr	0.2	1.3	0.25
Cu	1.6	1.1	0.22
Fe	0.6	14	2.8
Ni	1.2	1.2	0.23
Pb	0.01	0.3	0.05
Sb	0.14	0.5	0.1
Se	0.1	0.6	0.11
TI	0.01	0.7	0.13
V	2.6	0.6	0.12
Zn	0.2	6	1.2

HMI – High Matrix Interface

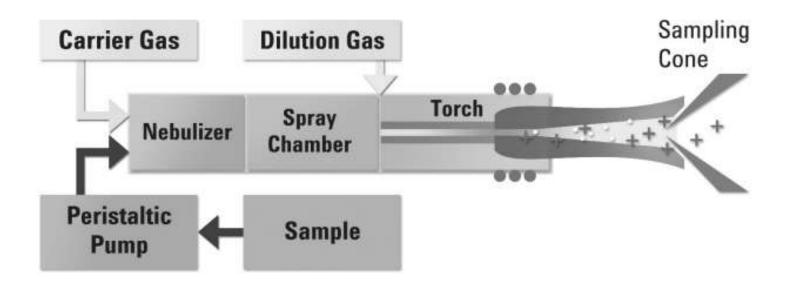
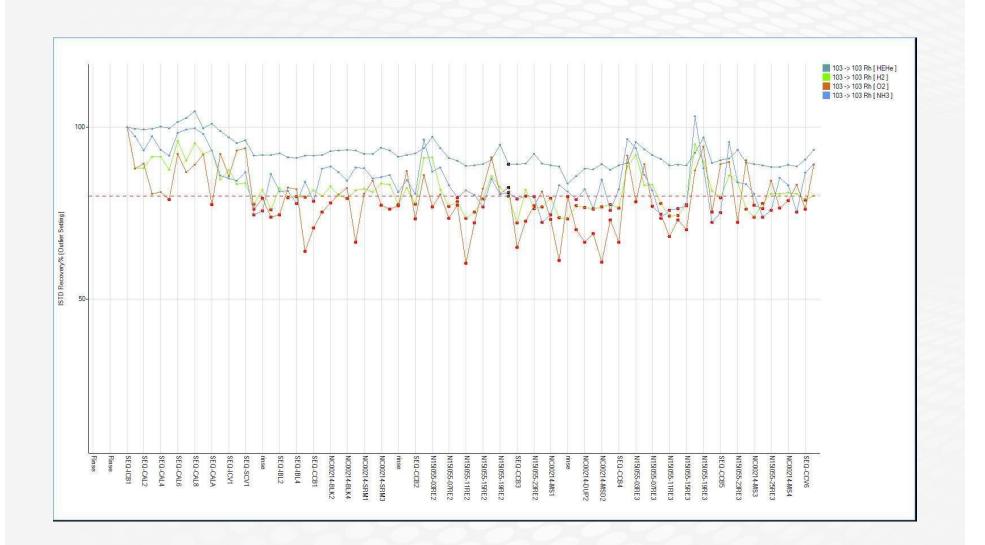



Figure 1. Block diagram of HMI component layout.

Agilent online technical library: https://www.agilent.com/cs/library/technicaloverviews/public/5989-7737EN.pdf

Agilent ICP-QQQ-MS HMI System

High Matrix Interface

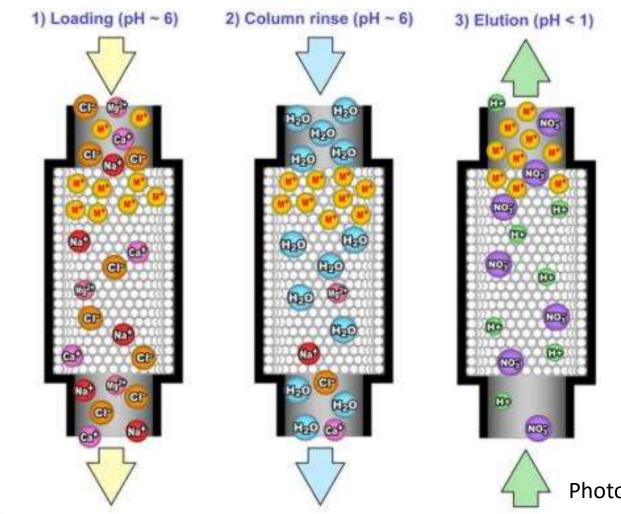
EPA Method 1640 Overview

- Drafted specifically for seawater analysis by ICP-MS
- Includes several options for preconcentration techniques that also eliminate most matrix interferences
 - Reductive precipitation (RP)
 - Ammonium pyrrolidinedithiocarbamate co-precipitation (APDC)
 - Online column chelation

APDC and Reductive Precipitation

A preparation technique whereby a catalytic solution of iron and palladium (RP) or cobalt(II) chloride (APDC) is added to the seawater sample, followed by ammonium hydroxide and a borohydride solution, resulting in the precipitation of metals that complex with the reagents.

The precipitate is then filtered, allowing the salts and TDS to pass through the filter. The precipitated metals are then re-digested into solution using concentrated nitric acid.

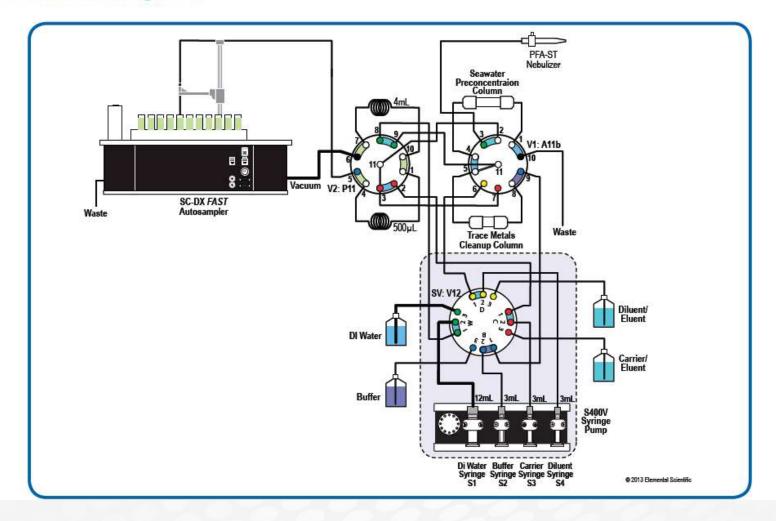


APDC and Reductive Precipitation Sample Preparation Techniques

- Pros
 - Low detection limits due to preconcentration
 - Removes analyte of interest from saline matrix
- Cons
 - Requires large initial volume
 - Time and labor intensive (off-line)
 - Elevated risk of contamination

Matrix Removal and Trace Metals Preconcentration Using On-line Column Chelation

1. An aliquot of seawater is passed through a column containing a chelating resin.


2. The metals of interest are bound to the resin, while salts and other TDS pass through

3. The bound metals are then rinsed off the column with a nitric acid solution into the ICP-MS

Photo credit: Elemental Scientific Inc.

ESI SeaFAST - A Complex System

seaFAST S2 Diagrams

Common Metals in Seawater

 Typical metals that are accurately quantified by column chelation method:

Co, Cd, Cu, Fe, Mn, Ni, Pb, V, and Zn

- Not all metals bind efficiently to the column
- What are the improvements possible by using Column Chelation coupled to ICP-QQQ-MS?

MDLs using Column Chelation coupled to ICP-QQQ-MS

- Analysis of 8 method blanks
- MDL = method blank average + 3x standard deviation of method blanks

	V	Mn	Со	Ni	Cu	Cd	Pb
MDL (ng/L)	1.6	0.37	0.094	0.30	4.26	0.026	0.017

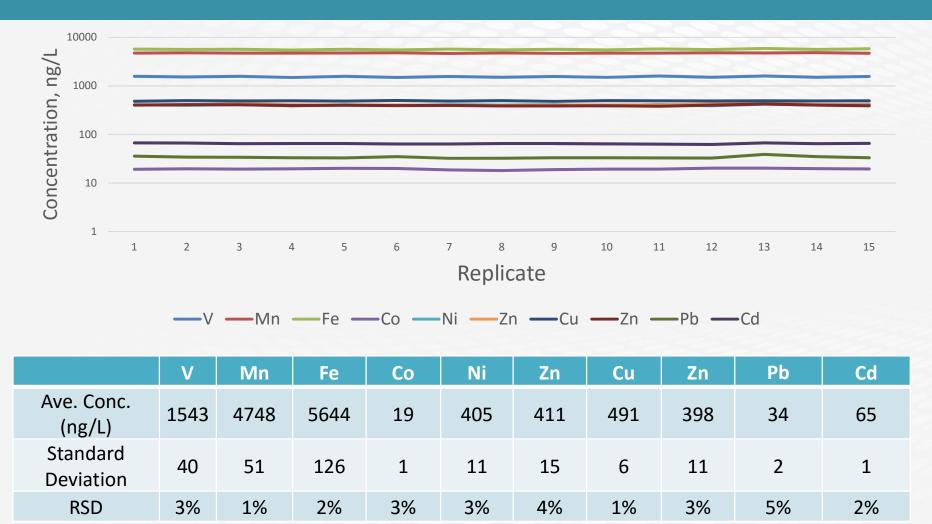
Note change in units from µg/L (parts-per-billion, ppb) to ng/L (parts-per-trillion, ppt)

Limits of Quantitation (LOQs)

Reality - do lowest calibration points produce acceptable recoveries?

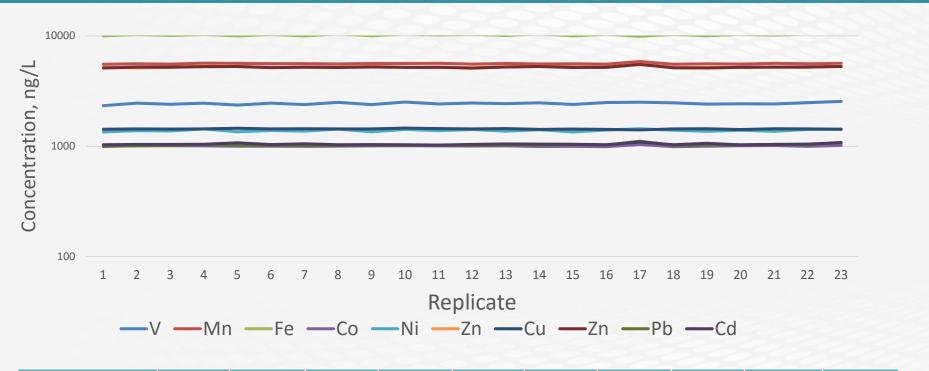
	Calibration Standard Recoveries														
Calibration Point	True value (ng/L)	Zn True value (ng/L)		Mn	Ni	Zn	Cd	V	Со	Cu	Pb				
1	10	50		95%	90%	84%	101%	95%	103%	113%	104%				
2	20	100		100%	118%	97%	101%	104%	105%	106%	104%				
3	50	250		104%	104%	104%	103%	97%	105%	113%	102%				
4	100	500		102%	107%	104%	106%	107%	109%	109%	106%				
5	500	2500		103%	106%	103%	105%	100%	105%	104%	102%				
6	1000	5000		99%	105%	99%	101%	101%	99%	98%	98%				
7	5000	25000		86%	100%	86%	100%	100%	100%	100%	100%				
Blank		BEC		3	6	97	0.042	0.319	3.08	8.9	1.607				

Accuracy of Column Chelation


	SLEW-3 (estuarine water CRM from NRCC)													
	V	Mn	Fe	Со	Ni	Cu	Zn	Cd						
Certified Value (ng/L)	2570	1610	568	42	1230	1550	201	48						
Analysis				Recov	veries									
Day1 Rep1	106%	107%	83%	110%	115%	103%	90%	107%						
Day1 Rep2	103%	107%	88%	110%	113%	102%	106%	107%						
Day2 Rep1	105%	105%	113%	104%	106%	106%	100%	105%						
Day2 Rep2	103%	102%	95%	104%	103%	106%	86%	104%						
Day2 Rep3	104%	102%	100%	103%	105%	105%	88%	101%						
Day2 Rep4	108%	107%	117%	107%	107%	109%	101%	111%						
Day2 Rep5	107%	104%	97%	105%	108%	107%	82%	101%						
Day2 Rep6	103%	101%	93%	102%	103%	104%	82%	103%						
Day2 Rep7	103%	102%	98%	103%	102%	102%	91%	104%						
Day2 Rep8	102%	101%	103%	102%	102%	103%	86%	102%						
Average	105%	104%	99%	105%	106%	105%	91%	104%						

Accuracy of Column Chelation

NA	ASS-6 (N	learsho	ore seav	vater Cl	RM fror	n NRCC)
	V	Mn	Fe	Со	Ni	Cu	Cd
Certified Value (ng/L)	1460	530	495	15	301	248	31
Analysis			R	ecoverie	S		
Day1 Rep1	83%	99%	77%	108%	101%	92%	101%
Day1 Rep2	86%	102%	84%	105%	112%	95%	99%
Day1 Rep3	83%	105%	116%	132%	110%	96%	103%
Day1 Rep4	89%	101%	97%	107%	113%	97%	88%
Day1 Rep5	85%	101%	83%	108%	106%	95%	100%
Day1 Rep6	89%	101%	89%	105%	111%	97%	101%
Day1 Rep7	88%	101%	82%	105%	111%	93%	94%
Day2 Rep1	83%	95%	76%	92%	93%	93%	98%
Day2 Rep2	85%	92%	78%	96%	95%	93%	91%
Average	86%	100%	87%	106%	106%	95%	97%


Precision - Stability

Multiple injections using ambient seawater from Puget Sound

Precision - Stability

Multiple injections using spiked seawater from Puget Sound

	V	Mn	Fe	Со	Ni	Zn	Си	Zn	Pb	Cd
Ave. Conc. (ng/L)	2445	5608	10222	1006	1393	5233	1436	5215	1030	1045
Standard Deviation	53	65	187	10	30	95	12	81	24	17
RSD	2%	1%	2%	1%	2%	2%	1%	2%	2%	2%

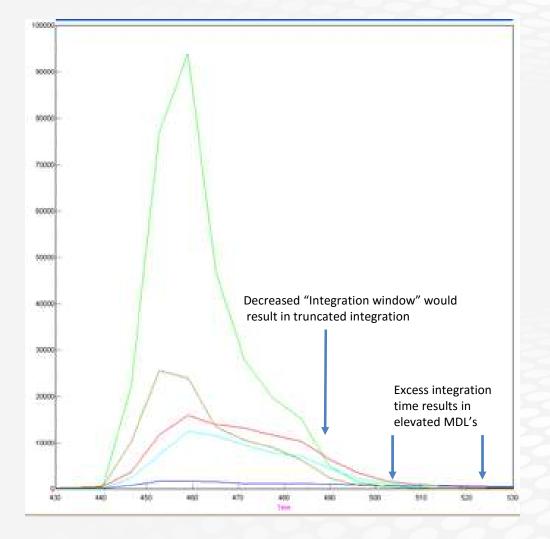
Matrix Effects

Evaluating matrix effects using spiked samples

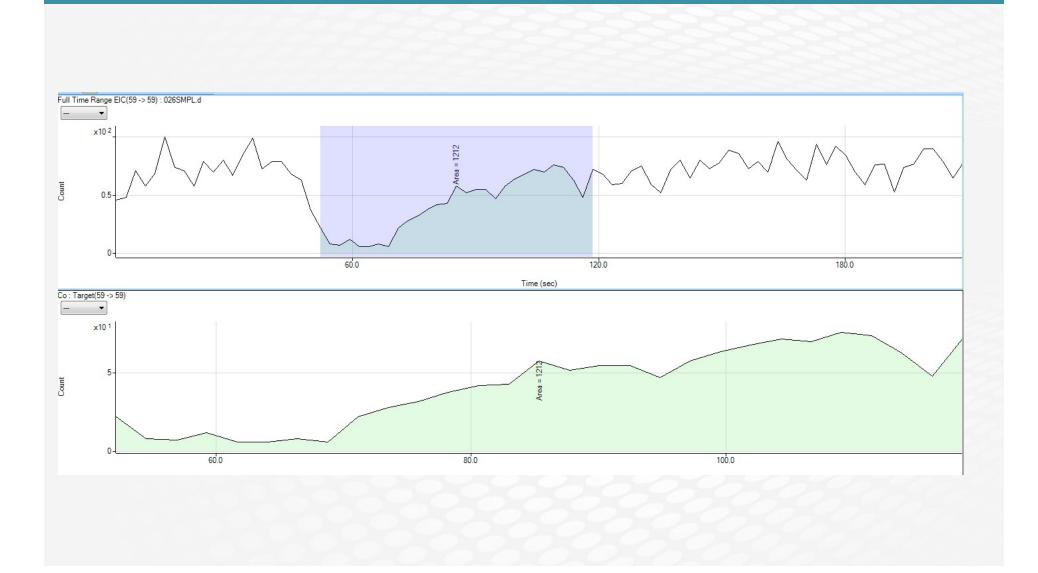
(Replicat	(Replicate concentration - Mean assigned concentration) / Spike concentration												
Replicate	V	Mn	Fe	Со	Ni	Zn	Cu	Zn	Pb	Cd			
1	79%	79%	87%	97%	94%	95%	94%	95%	97%	97%			
2	91%	84%	94%	99%	98%	95%	95%	96%	98%	97%			
3	86%	81%	89%	99%	97%	95%	94%	96%	98%	97%			
4	92%	91%	94%	99%	103%	99%	95%	97%	100%	98%			
5	82%	89%	87%	98%	95%	97%	96%	98%	99%	101%			
6	91%	85%	94%	98%	99%	96%	95%	95%	99%	97%			
7	84%	85%	87%	98%	97%	96%	95%	96%	98%	99%			
8	96%	83%	96%	98%	103%	96%	94%	95%	98%	97%			
9	84%	88%	87%	99%	95%	98%	95%	97%	99%	97%			
10	97%	88%	96%	99%	102%	95%	97%	96%	98%	97%			
11	88%	90%	91%	99%	98%	96%	95%	96%	99%	96%			
12	93%	81%	94%	99%	102%	95%	95%	94%	99%	97%			
13	89%	87%	89%	99%	97%	97%	96%	97%	99%	99%			
14	93%	82%	97%	98%	101%	98%	93%	98%	99%	98%			
15	85%	84%	87%	98%	94%	96%	94%	95%	100%	98%			
16	95%	81%	95%	97%	100%	96%	93%	96%	100%	97%			
17	97%	111%	86%	102%	104%	103%	92%	102%	108%	103%			
18	93%	79%	94%	97%	99%	95%	94%	95%	98%	97%			
19	87%	85%	88%	98%	96%	95%	95%	95%	100%	100%			
20	89%	80%	95%	99%	99%	95%	93%	96%	100%	97%			
21	88%	90%	90%	100%	96%	97%	95%	96%	101%	98%			
22	94%	84%	96%	98%	102%	95%	94%	97%	100%	98%			
23	101%	90%	95%	100%	102%	99%	94%	98%	105%	101%			
Mean Recovery	90%	86%	92%	99%	99%	96%	95%	96%	100%	98%			

Advantages of Using the ESI SeaFAST Coupled to the Agilent ICP-QQQ-MS

- Double quadrupole mass filter and CRC for removing polyatomic interferences
- Highly sensitive system resulting in low detection limits
- Low background
- Peak integration with Agilent Mass Hunter


Data Processing

Peak integration on ICP-QQQ-MS with Mass Hunter


Peak integration is completely customizable per analyte per injection for best fit, resulting in lower detection limits

Data Processing

- Using other ICP-MS software, "peak integration" is predefined regardless of peak size or retention time
- Excess integration time can increase detection limits
- Short integration time can cause peak cut-off resulting in low-biased data

Low Background on the ICP-QQQ-MS

Ahead of the Curve

Rare Earth by Column Chelation

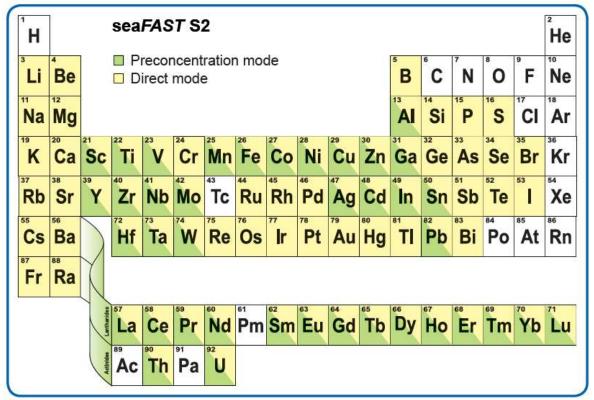


Diagram 1. Elements analyzed using the seaFAST S2 system

Meaningful Metals Data & Advanced Speciation Solutions

www.brooksapplied.com **\$** 206-632-6206

info@brooksapplied.com

Why?

- Deep sea mining regulation
 - International seabed authority
 - Earth magazine
- Evaluation of REE concentrations in all aqueous matrices need ultra-low level detection limits

MDLs In parts-per-quadrillion (ppq)

- Analysis of 8 method blanks
- MDL = method blank average + 3x standard deviation of method blanks

	La	Се	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
MDL (pg/L)	1.6	3.8	2.3	1.4	0.8	2.7	2.6	3.4	3.2	0.4	2.2

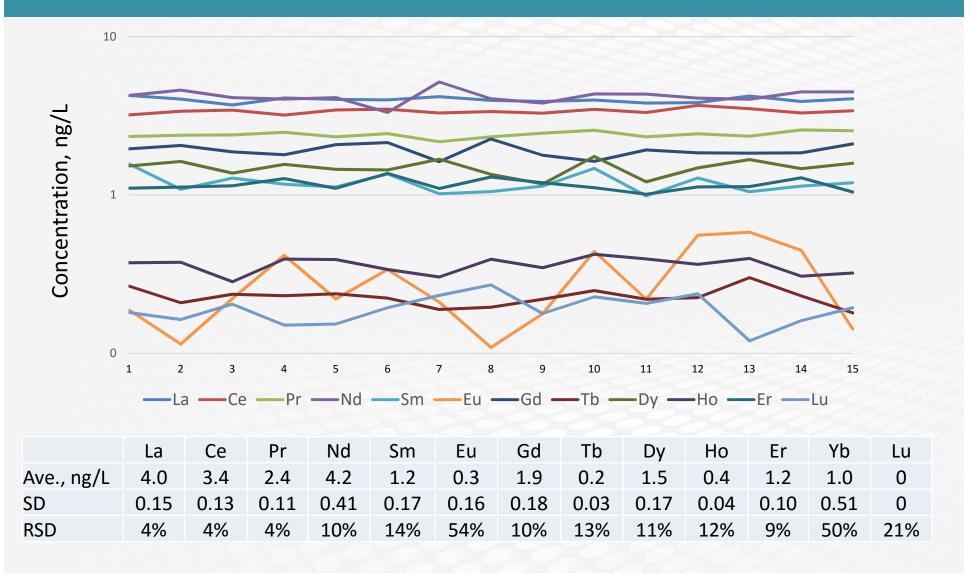
LOQs Recovery of lowest calibration points

Calibration Point	True Value (pg/L)	La	Се	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
1	100	80%	58%	78%	53%	107%	103%	76%	95%	100%	96%	79%
2	200	91%	92%	94%	52%	102%	89%	119%	102%	96%	73%	85%
3	500	97%	106%	126%	89%	98%	113%	117%	107%	98%	72%	89%
4	1000	104%	97%	96%	94%	110%	96%	107%	101%	97%	91%	97%
5	5000	111%	114%	87%	102%	101%	98%	98%	103%	98%	108%	103%
6	10000	101%	100%	103%	100%	99%	100%	100%	100%	100%	108%	99%
Blank	BEC	78	136	6	0	9	6	30	0	13	0	2

Accuracy SLEW-3 Estuarine Water CRM (non-certified values)

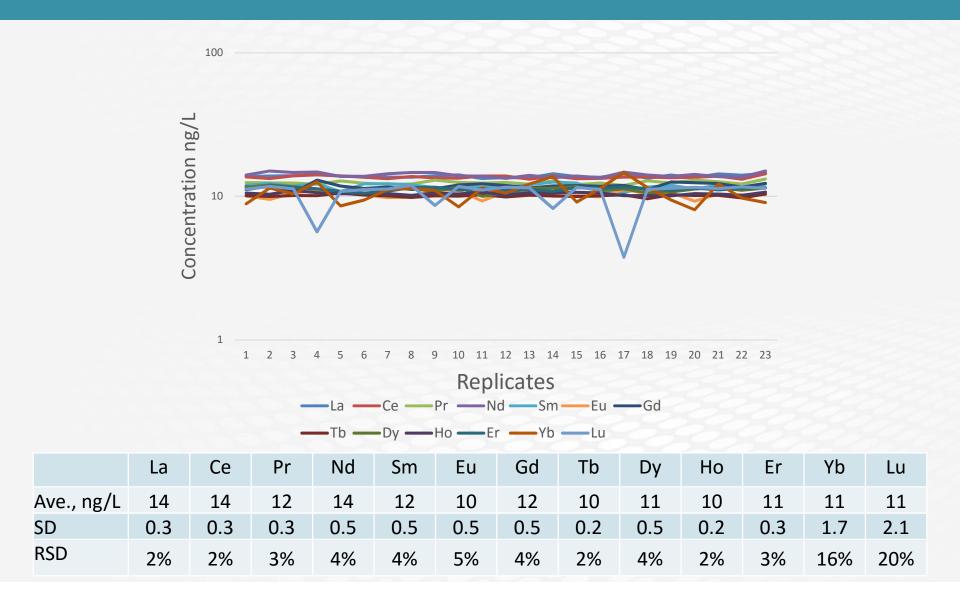
Reference Values (ng/L)												
	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
	7.70	6.60	7.93	7.20	0.48	3.10	0.45	3.38	0.91	2.70	1.80	0.29
Recoveries												
Rep 1	95%	101%	95%	100%	112%	104%	96%	98%	97%	94%	25%	119%
Rep 2	96%	93%	96%	107%	162%	93%	93%	87%	93%	109%	117%	78%
Rep 3	95%	98%	100%	104%	152%	100%	95%	101%	87%	93%	90%	52%
Rep 4	99%	97%	97%	96%	107%	94%	88%	96%	88%	96%	97%	74%
Rep 5	96%	94%	102%	96%	124%	91%	93%	100%	95%	99%	102%	64%
Rep 6	99%	99%	103%	106%	135%	94%	90%	99%	85%	101%	99%	52%
Rep 7	93%	96%	94%	91%	93%	100%	79%	91%	89%	95%	118%	72%
Rep 8	94%	93%	97%	92%	98%	85%	93%	90%	95%	96%	107%	86%
Rep 9	98%	96%	104%	97%	137%	101%	86%	95%	96%	98%	91%	72%
Rep 10	96%	99%	99%	97%	99%	92%	86%	91%	84%	94%	105%	74%
Average	96%	97%	99%	99%	122%	95%	90%	95%	91%	97%	95%	74%

GeoReM: Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B. and Hofmann, A. W. (2005), GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 29: 333–338. doi: 10.1111/j.1751-908X.2005.tb00904.x http://georem.mpch-mainz.gwdg.de/


Accuracy NASS-6 Seawater CRM (non-certified values)

Reference Values (ng/L)												
	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
	12.700	6.200	6.000	0.810	0.200	1.000	0.200	1.600	0.310	1.700	1.300	0.260
Recoveries												
Rep 1	76%	60%	92%	177%	114%	154%	120%	106%	116%	77%	208%	108%
Rep 2	80%	67%	107%	171%	370%	156%	126%	92%	145%	77%	47%	83%
Rep 3	86%	78%	133%	90%	238%	229%	97%	97%	108%	78%	116%	37%
Rep 4	81%	64%	112%	127%	182%	146%	89%	90%	127%	76%	111%	74%
Rep 5	81%	68%	109%	150%	57%	130%	95%	97%	114%	79%	104%	87%
Rep 6	82%	69%	120%	149%	74%	131%	140%	89%	120%	77%	79%	92%
Rep 7	81%	69%	95%	142%	167%	129%	110%	78%	132%	81%	124%	104%
Rep 8	78%	61%	119%	150%	106%	150%	101%	96%	120%	74%	82%	75%
Rep 9	77%	62%	102%	125%	243%	137%	108%	102%	130%	75%	56%	55%
Average	80%	66%	110%	142%	172%	151%	110%	94%	124%	77%	103%	80%

GeoReM: Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B. and Hofmann, A. W. (2005), GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 29: 333–338. doi: 10.1111/j.1751-908X.2005.tb00904.x http://georem.mpch-mainz.gwdg.de/


Precision – Stability for REEs

Multiple injections using ambient seawater from Puget Sound

Precision – Stability for REEs

Multiple injections using spiked seawater from Puget Sound

Matrix Effects

Evaluating matrix effects using analytical spikes

(Replicate concentration - Mean assigned concentration) / Spike concentration

Replicate	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
1	98%	103%	101%	99%	108%	98%	97%	99%	101%	102%	100%	79%	110%
2	99%	99%	100%	108%	111%	92%	97%	98%	105%	100%	107%	104%	116%
3	99%	105%	100%	105%	106%	103%	87%	99%	102%	106%	103%	94%	111%
4	102%	107%	97%	106%	111%	107%	111%	99%	98%	103%	101%	116%	55%
5	98%	105%	104%	96%	96%	103%	99%	103%	93%	101%	96%	76%	106%
6	98%	102%	100%	96%	110%	99%	94%	100%	97%	101%	94%	84%	110%
7	96%	99%	97%	102%	111%	95%	97%	99%	98%	101%	97%	101%	111%
8	96%	104%	98%	105%	109%	96%	93%	96%	98%	98%	104%	104%	117%
9	100%	101%	106%	105%	103%	109%	94%	98%	93%	102%	104%	100%	85%
10	101%	100%	101%	97%	104%	106%	101%	98%	101%	100%	99%	74%	115%
11	93%	105%	100%	96%	104%	90%	103%	101%	85%	104%	101%	104%	109%
12	95%	105%	101%	91%	104%	105%	100%	97%	90%	98%	99%	95%	114%
13	95%	98%	98%	98%	108%	103%	95%	100%	99%	103%	100%	112%	113%
14	104%	105%	104%	93%	114%	97%	99%	98%	99%	102%	97%	127%	80%
15	97%	99%	97%	97%	112%	98%	100%	98%	102%	103%	103%	81%	113%
16	96%	100%	100%	92%	98%	96%	98%	99%	95%	102%	102%	103%	110%
17	104%	102%	95%	105%	95%	109%	100%	100%	98%	98%	105%	137%	36%
18	94%	102%	104%	99%	104%	101%	92%	94%	91%	98%	102%	105%	110%
19	101%	101%	100%	96%	107%	103%	107%	100%	92%	97%	98%	84%	112%
20	95%	102%	106%	100%	101%	90%	105%	99%	98%	101%	103%	70%	114%
21	103%	105%	102%	95%	107%	101%	104%	99%	100%	100%	99%	112%	111%
22	100%	98%	98%	94%	104%	99%	97%	95%	95%	98%	102%	87%	115%
23	105%	110%	108%	108%	110%	100%	104%	102%	99%	104%	103%	80%	112%
Average	99%	102%	101%	99%	106%	100%	99%	99%	97%	101%	101%	97%	104%

Summary

Merits of EPA 1640 column chelation coupled to ICP-QQQ-MS

- Undiluted analysis of seawater samples
- Preconcentration yields extremely low detection limits of typical metals (ng/L)
- Effective matrix and interference removal
- Accurate and precise analysis of seawater
- Future potential of extremely low detection limits for select REE metals (pg/L)

Meaningful Metals Data & Advanced Speciation Solutions

Questions?

Thank you!!

Agilent, ESI, Brooks Applied Labs, and the Audience