

Trace Elemental Analysis of Produced and Flowback Waters

Mark Kelinske Application Chemist NEMC 2016

Introduction

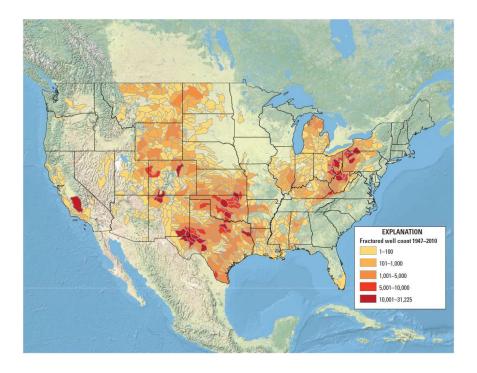
- Why is this a concern?
- Analytical Challenges
 - Total Dissolved Solids (TDS)
 - Interference Control
 - Quantitation Limits
- Instrumental Solutions

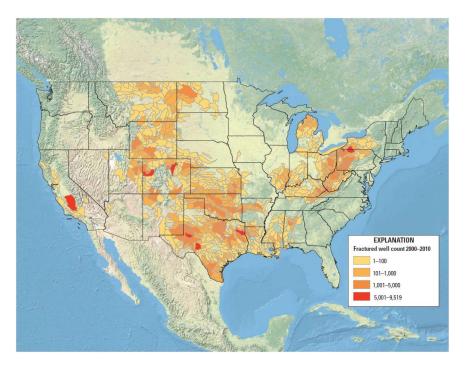
Recent Studies

Trends in Hydraulic Fracturing Distributions and Treatment Fluids, Additives, Proppants, and Water Volumes Applied to Wells Drilled in the United States from 1947 through 2010— Data Analysis and Comparison to the Literature

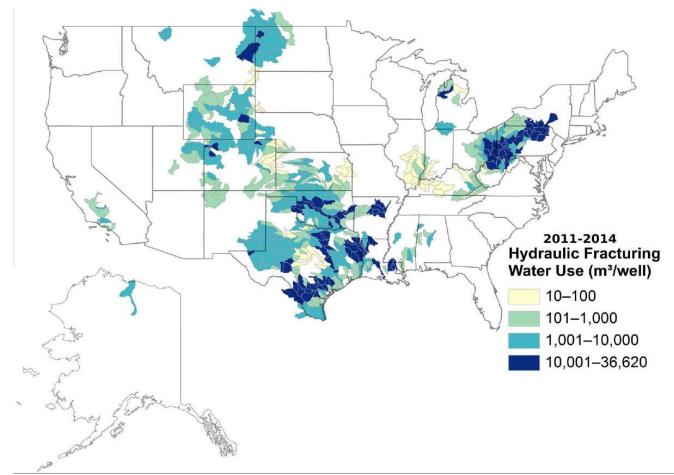
Scientific Investigations Report 2014-5131

U.S. Department of the Interior U.S. Geological Survey RECLAMATION Managing Water in the West


Science and Technology Program Report No. 157


Oil and Gas Produced Water Management and Beneficial Use in the Western United States

Hydraulically Fractured Wells



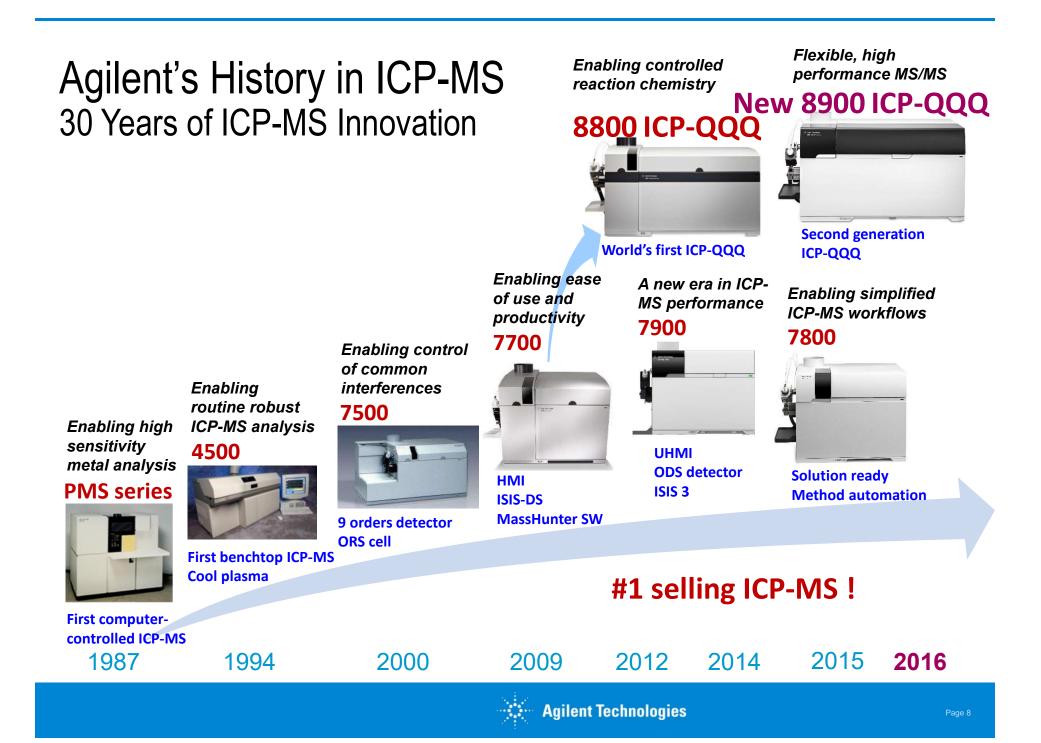
USGS 2014-5131

Water Use is on the Rise

• Water use is as high as 9.7 million gallons per well

USGS 2015

Analytical Challenges of Produced Waters


- High Total Dissolved Solids (TDS) (USGS 2002)
 - 1,000 mg/L to 400,000 mg/L
 - Chloride up to 250,000 mg/L
 - Sodium up to 150,000 mg/L
 - Calcium up to 74,000 mg/L
 - Sulfate up to 15,000 mg/L
- High Carbon Content
 - TOC up to ~2,000 mg/L
 - Total Oil up to ~500 mg/L
- Variable concentration of target elements
 - ND to several ppm

Pre-Treatment Adds to the Challenge

- •Water is often treated prior to use
 - Corrosion inhibitors
 - Bacterial inhibitors
 - Scale inhibitors
 - Emulsion breakers
 - Anti-Foaming Agents
- Water requires treatment after use

Agilent 7900 ICP-MS

Improved Concentration Power (I.C.P. Mode)

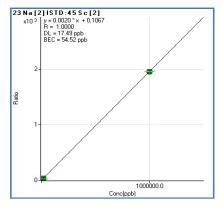
1) Matrix Tolerance

Ultra High Matrix Introduction System (UHMI)

Handles tough sample matrices better than any other ICP-MS. Highest total dissolved solids(TDS) capability up to 25% Reduces sample prep time and error

• Better long-term stability

2) Interface Design



Specially designed interface for improved matrix tolerance and at higher sensitivities.

Specially designed for higher sensitivity at lower oxides

- Great performance and low polyatomic formation
- Easy access to the interface for ease of use and maintenance.

3) Orthogonal Detector

Orthogonal Detector (11 orders dynamic range)

From 0.1ppt to 1%

- Simplifies method development
- Easy sample prep.
- Improves productivity

The UHMI's matrix tolerance, the specially designed interface and the Orthogonal Detector's dynamic range gives the 7900 the capability of the I.C.P. mode.

Introducing the Agilent UHMI

UHMI (ultra High Matrix Interface) – much more than just a simple T-piece

UHMI uses optimized gas mixing geometry and sophisticated plasma/gasflow tuning algorithm to set reproducible conditions for predictable aerosol dilution rate

The Big Four Spiked at Different Salt Content

NaCl Amount	75 As [25 ppb]	114 Cd [50 ppb]	208 Pb [50 ppb]	201 Hg [1 ppb]
0%	26.9	49.2	49.7	0.85
0.5%	24.2	49.0	50.1	0.99
1%	24.8	51.5	50.2	0.93
1.5%	25.5	50.0	50.5	0.88
2%	24.6	50.0	49.7	1.03
5%	25.4	48.7	50.7	0.89
10%	22.8	46.1	49.8	0.91
25%	26.2	45.4	49.0	0.96
Average	25.1	48.7	50.0	0.93
% RSD	5%	4%	1%	6%
% Recovered	100%	97%	100%	93%

2g / 100ml = 0.5%

1.5g / 100ml = 0.5%

0.5g / 100ml = 0.5%

1g / 100ml = 0.5%

5g / 100ml = 0.5%

10g / 100ml = 0.5%

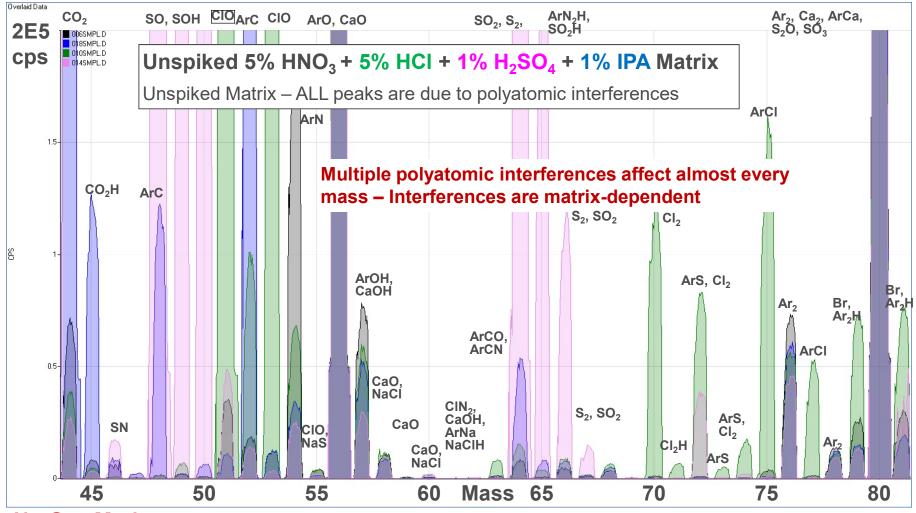
Processes of Interference Removal in Collision/Reaction Cell

Collisional Dissociation

 Limited in ICP-MS, as collision energy must be higher than bond dissociation energy

Reaction

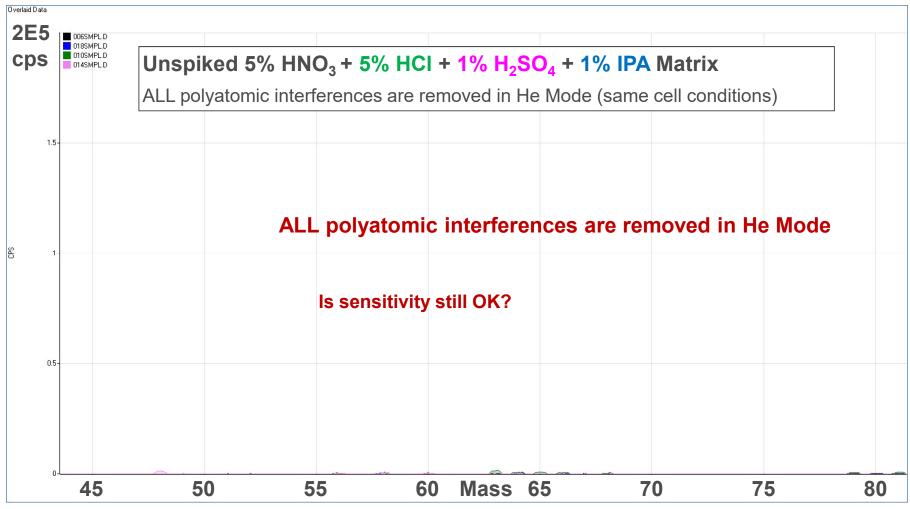
 Can be very efficient – up to 9 orders reduction – but can also be nonselective. Highly reactive gases may react with analytes, matrix components and residual cell contamination, giving analyte loss and the formation of complex cluster ions


Energy Discrimination

• Useful in complex, variable and unknown matrices, as interference removal occurs, regardless of the level, source and chemistry of the interfering species. Can use inert cell gas, so no reaction with analytes and no formation of new cluster ions

Polyatomic Interferences in No Gas Mode

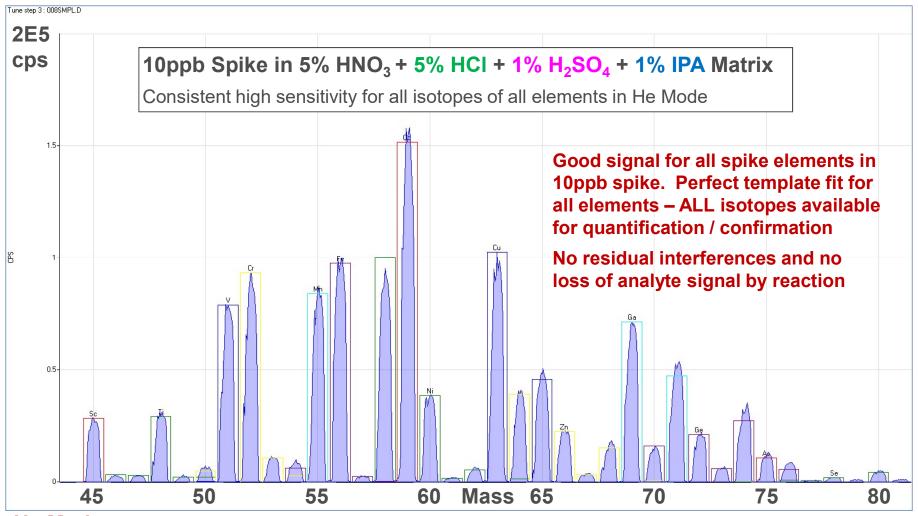
Color of spectrum indicates which matrix gave each interfering peak



No Gas Mode

Polyatomic Interferences in He Mode

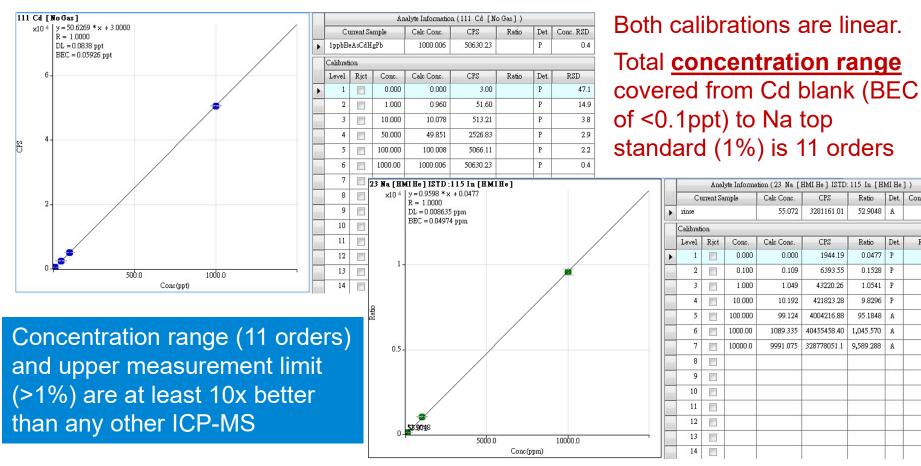
Color of spectrum indicates which matrix gave each interfering peak



He Mode

Matrix Mix with Spike (10ppb) in He Mode

Consistent sensitivity and perfect template match for all elements



He Mode

Far Wider Dynamic Range Than Any Other ICP-MS 11 orders - low and high level calibrations in a single run

Cd (1ppt - 1ppb) and Na (100ppb - 10,000ppm (1%)) in the same run

CPS

CPS

1944.19

6393.55

43220.26

421823.28

Ratio

Ratio Det

52.9048 A

0.0477 P

0.1528 P

1.0541 P

9.8296 P

95.1848 A

1.045.570 A

9,589.288 A

Det. Conc. RSD

31.7

5.8

2.9

1.3

3.2

1.7

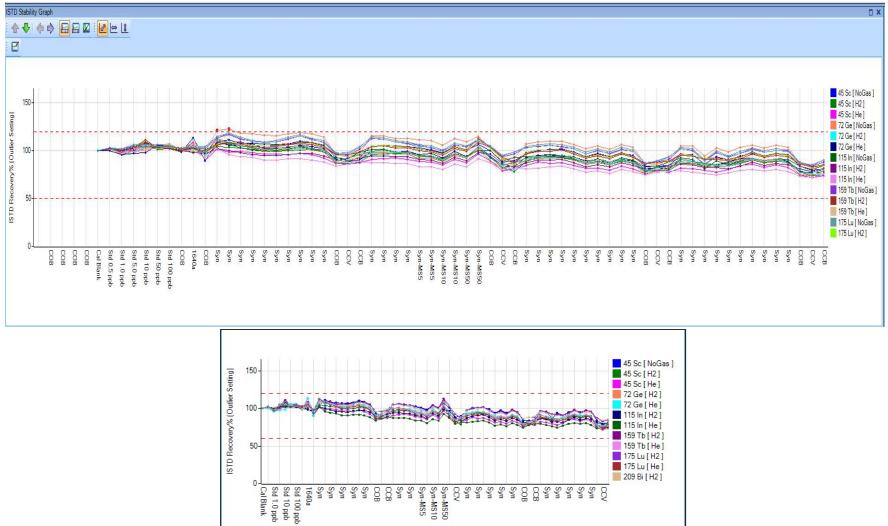
1.5

3.7

RSD

Experimental

This study used He or H_2 cell mode for most elements and no gas mode for low mass elements.


A synthetic sample was analyzed for ~8 hours to demonstrate stability, and was spiked to demonstration accuracy.

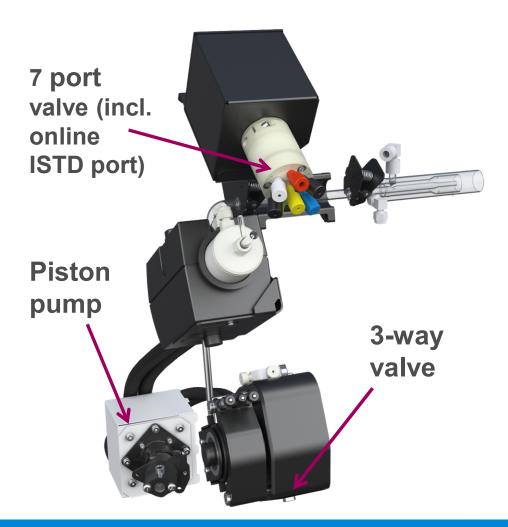
Pre-Set Plasma conditions and AutoTune features were used.

Results

Run Stability over 8 hours

Results

Stability and Recovery Statistics


Isotope/ Element	RSD %	MS %R	MSD %R		
9 Be	4.2%	96%	94%		
23 Na	1.4%	NA ¹	NA ¹		
24 Mg	1.0%	NA ¹	NA ¹		
27 AI	1.3%	NA ¹	NA ¹		
39 K	1.0%	NA ¹	NA ¹		
44 Ca	1.1%	NA ¹	NA ¹		
51 V	1.2%	100%	97%		
52 Cr	1.0%	100%	98%		
55 Mn	1.2%	100%	94%		
56 Fe	1.7%	NA ¹	NA ¹		
59 Co	1.6%	103%	100%		
60 Ni	1.7%	105%	101%		
63 Cu	1.6%	106%	100%		
66 Zn	1.0%	106%	103%		
75 As	1.9%	103%	104%		
78 Se	3.1%	102%	102%		
95 Mo	0.8%	NA ¹	NA ¹		
107 Ag	4.4%	104%	101%		
111 Cd	6.7%	102%	100%		
121 Sb	17%	111%	112%		
137 Ba	3.7%	103%	101%		
205 TI	11%	104%	104%		
208 Pb	0.8%	105%	102%		
232 Th	1.4%	103%	101%		
238 U	4.8%	101%	100%		

Note 1 - Concentration too high to spike appropriately.

Integrated Sample Introduction System Fully compliant <u>multi-mode</u> EPA 6020 analysis in <1 minute

Close-coupled valve – very short tube length so minimal stabilization/rinse delay

Piston pump for faster sample uptake

3-way valve to switch between on-line ISTD or tune solution

ISIS is now compatible with Startup auto-optimization functions and full autotune

With Intelligent Sequencing, ICP-QQQ is suitable for routine, highthroughput analysis

Introduction

Faster analysis, improved ease-of-use, superior matrix tolerance

Combing the unique benefits from each of the following provides much faster analysis, improved ease-of-use and superior matrix tolerance:

- Agilent 7900 ORS⁴ He mode collision cell
 - For interference removal
- Ultra High Maxtrix Introduction (UHMI)
 - Aerosol dilution
- ISIS 3
 - Discrete sampling to achieve the best possible productivity

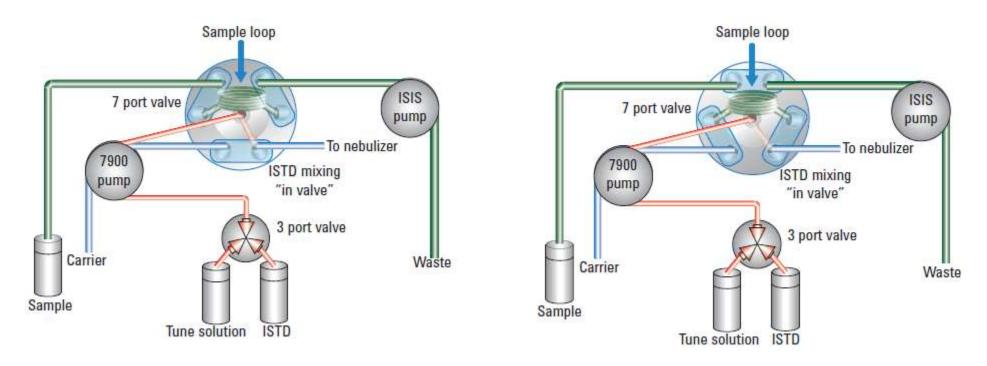

Experimental Operating conditions

 Table 1. Agilent 7900 ICP-MS operating conditions

ICP-MS parameters	No gas mode	He mode		
RF power (W)	1600			
Carrier gas flow (L/min)	0.77			
Dilution gas flow (L/min)	0.28			
Lens tune	Autotune	Autotune		
Cell gas flow (mL/min)	0.0	4.3		
Energy discrimination (V)	5.0			
Number of elements	1 analyte, 1 ISTD	25 analytes, 6 ISTDs		
Total acquisition time (3 reps) (seconds)	41			

Experimental ISIS-DS operation

Figure 1. Overview of ISIS-DS operation. Valve in load position (upper left) and inject position (upper right). Actual analyte and internal standard signals during ISIS 3 operation are shown in lower plot with annotation (shown on next page).

Experimental ISIS-DS operation

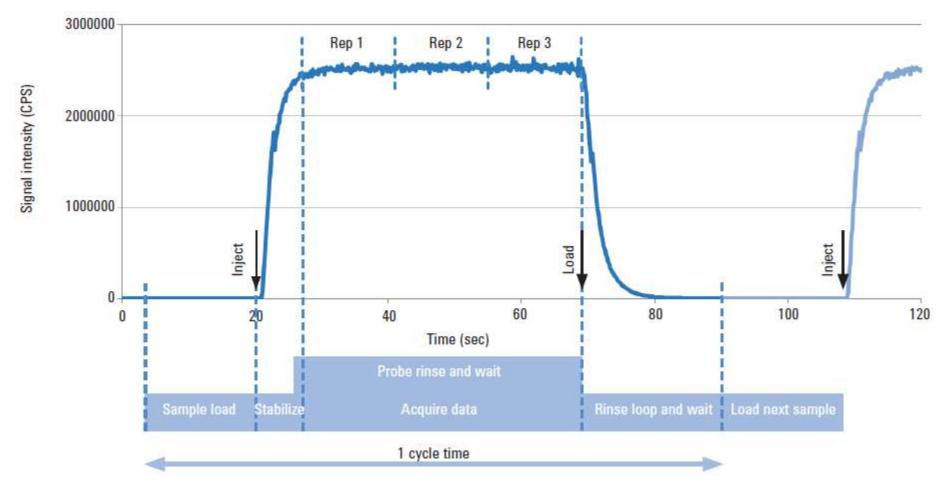
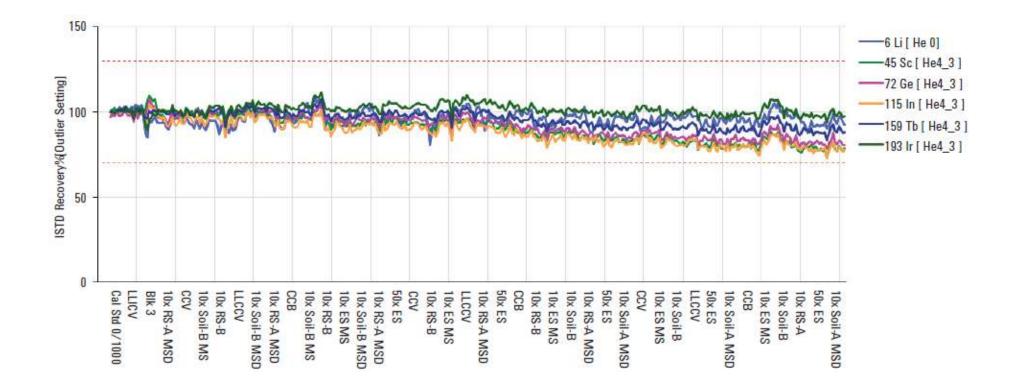


Figure 1 continued. Actual analyte and internal standard signals during ISIS 3 operation are shown with annotation.


This study used He cell mode for most elements and no gas mode for low mass elements.

383 samples were measured in 9 hours and 35 minutes with a run-to-run time of 90 seconds per sample.

The throughput was increased by ~30% compared to a similar study carried out using a 7700x ICP-MS with ISIS 2.

Results Meeting EPA QA/QC requirements

Figure 4. Internal standard recoveries normalized to the calibration blank for all samples. Due to limited space, not all sample names are shown. No internal standard failures occurred.

Results and discussion Recovery of certified reference values

Table 4. Mean measured values, recoveries, percent Relative Standard Deviations (%RSDs) for all certified elements in the six CRMs analyzed. Blank cells indicate no certified value.

* Concentration of 1/10 diluted solution. ND: less than detection limit

Isotope/	NIST 1640a (n=7)			River Sediment A (1/10, n=14)*		River Sediment B (1/10, n=14)*			
Element	Mean conc. (ppb)	%RSD	Mean recovery (%)	Mean conc. (ppb)	%RSD	Mean recovery (%)	Mean conc. (ppb)	%RSD	Mean recovery (%)
9 Be	2.80	2.4	93	0.026	9.8		ND		
23 Na	3,112	2.0	107	5,326	1.8	107	5,610	1.6	112
24 Mg	1,062	1.7	101	7,375	1.8	105	13,130	1.3	109
27 AI	57.8	4.4	109	25,180	1.3	101	61,460	0.6	102
39 K	561	5.4	97	14,730	2.4	98	20,220	2.3	101
44 Ca	5,373	3.2	97	29,050	1.8	97	28,960	1.6	97
51 V	15.4	1.5	103	25.5	1.1	102	104	0.7	104
52 Cr	40.5	1.6	101	30,950	1.1	103	1,592	0.9	106
55 Mn	40.0	1.7	100	786	2.2	98	587	1.1	98
56 Fe	44.2	5.7	121	122,000	0.9	102	41,610	0.6	104
59 Co	20.7	2.1	103	12.1	1.5	121	16.3	1.3	109
60 Ni	25.7	1.8	103	52.2	1.4	104	52.8	1.4	106
63 Cu	87.9	2.0	103	101.9	1.7	102	104	1.4	104
66 Zn	56.1	1.3	102	1,454	0.9	97	493	0.8	99
75 As	7.99	1.4	100	60.2	1.3	100	20.4	1.4	102
78 Se	18.5	5.1	93	2.28	5.7	114	0.95	10.5	95
95 Mo	45.8	2.0	101	0.074	7.0		0.17	4.8	
107 Ag	8.25	2.8	103	ND			0.17	2.3	
111 Cd	3.97	1.8	100	10.2	1.1	102	3.18	2.4	106
121 Sb	5.07	1.8	100	50.7	0.7	102	4.22	0.9	106
137 Ba	147	1.1	98	49.3	0.7	99	392	0.5	98
201 Hg	ND			ND			0.023	10.9	
205 TI	1.58	3.0	98	0.99	1.4	99	1.15	1.6	115
208 Pb	12.5	4.4	104	742	1.8	106	212	1.7	106
232 Th	0.002	40		2.04	2.6	102	9.93	2.3	99
238 U	25.2	3.8	100	1.02	3.1	102	3.02	2.9	101

Agilent Technologies

Conclusions

Long sequences of high Total Dissolved Solids (TDS) samples can be analyzed with high accuracy, precision, and long term stability using the Agilent 7900 ICP-MS.

This was shown by combining the benefits of He mode for removing polyatomic interferences with the UHMI for highly robust plasma conditions, and the ISIS 3 discrete sampling system.

Key Considerations

- Preservation
 - Off-gasing when adding acids
 - Verify pH post preservation
 - Precipitation
- Digestion
 - Closed vessel vs open vessel
 - Consider adding H₂O₂ and HCI
- High Quality Standards and Reagents
 - Only as good as your blanks
 - Standard stability
- Complimentary Techniques

Mark Kelinske

Mark.Kelinske@agilent.com

Agilent Technologies