

HIGH-PURIT

A Speciation Study of Hexavalent Chromium on Filter Media

Moven Mututuvari High Purity Standards NEMC 2016

Outline

- Introduction
- Objectives
- Experimental Design
- Results
- Conclusions and Future Research

- Objectives
- Experimental Design
- Results
- Conclusions and Future Research

Health Effects of Chromium Species

IGH-PURI

Glucose and protein metabolism

Cr(VI) – carcinogenic

- Lung cancer
- Chronic bronchitis

© Healthwise

Sources of Cr(VI) Generation

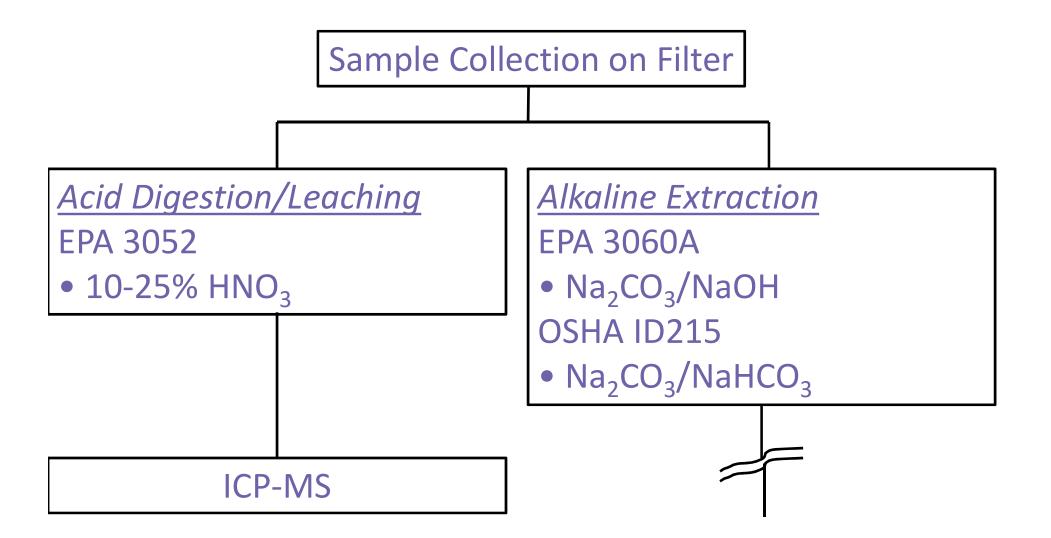
¹Photo courtesy of 10-4 Magazine ²Photo courtesy of Lincoln Electric ³Photo courtesy of Sigma-Aldrich ⁴Photo from Wikipedia

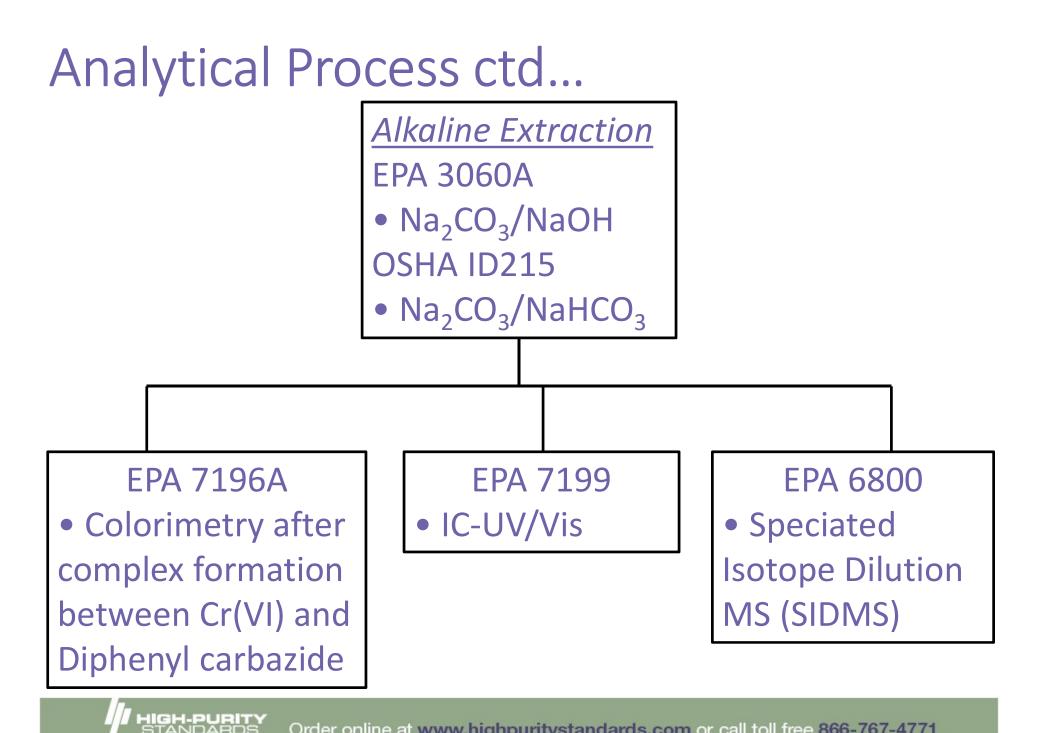
Cr(VI) Occupational Exposure Limits

National Institute for Occupational Safety and Health (NIOSH)

• Recommended Exposure Limit: 0.2 μg Cr(VI)/m³ of air

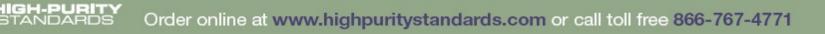
Occupational Safety and Health Administration (OSHA)


- Permissible Exposure Limit: 5µg Cr(VI)/m³ of air
- OSHA limit is legally binding


NIOSH [2013]. [https://www.cdc.gov/niosh/docs/2013-128/pdfs/2013_128.pdf]. (*accessed July 28, 2016*).

GH-PURITY TANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

Analytical Processes


HIGH-PURITY

- Contamination of filters with residual Cr.
- Efficiency of extraction solution.
- Storage stability.
- Interconversion of Cr(VI) and Cr(III) species.

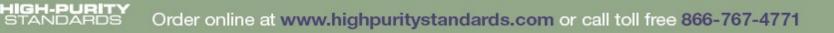
Outline

Introduction

- Experimental Design
- Results
- Conclusions and Future Research

Objectives

- To evaluate the methods of cleaning filters to remove residual chromium
- To apply IC/ICP-MS to study speciation and stability of Cr on filter media
- To develop a Certified Reference Material (CRM) filter containing trace levels of Cr(VI)



Outline

- Introduction
- Objectives

- Results
- Conclusions and Future Research

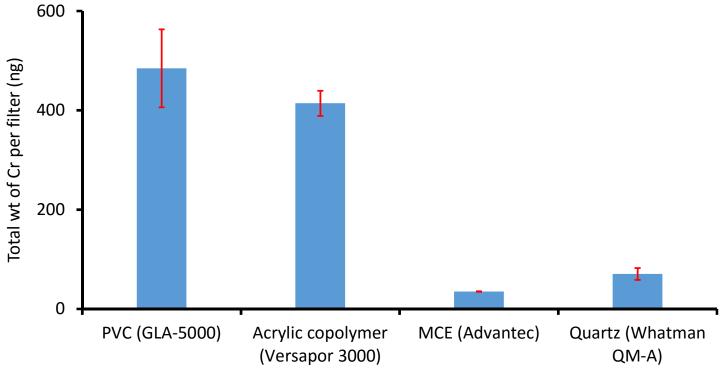
Experimental Design

- Determine background Cr contamination on filters.
- Evaluate 2 cleaning protocols used to remove background Cr from filters
- Apply EPA 7199 or modified OSHA ID 215 method to study Cr(VI) stability on filter media
- Apply IDMS from EPA Method 6800 to determine total Cr in spiked filters

Assessment of Cr Contamination of Filters

- Followed EPA method 3052 with slight modifications
 - Digestion/Extraction reagent: 10 mL of 10% or 25% HNO₃
 - Multiple filters of different media were digested using a Milestone Ethos Up microwave
 - Ramp to 130°C in 5 minutes, then ramp to 220°C in 20 minutes. Keep temperature at 220°C for an additional 20 minutes
 - Cooling time: 20 minutes
 - Microwave power: 1800 W

Outline


- Introduction
- Objectives
- Experimental Design

Conclusions and Future Research

HIGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

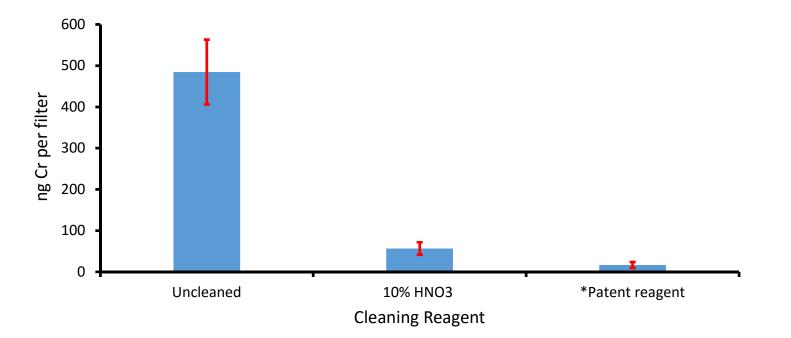
Trace Level of Chromium on Filters

Type of Filter

Acrylic and PVC filters contain high levels of CrNeed to clean filters

HGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

Evaluating Cleaning Protocols


¹*Protocol #1*: Soak filters in reagent per U.S. Patent 8,415,452

Protocol #2: Soak filters in 10% HNO₃

• Digest multiple filters using a Milestone Ethos Up microwave

¹Rubenstein, M. Hexavalent chromium and total chromium removal from polyvinylchloride (PVC) polymers. *U.S. Patent 8,415,452*, April 9, **2013**.

Results of Cleaning PVC Filters

• Patent reagent more effective than HNO₃

*Rubenstein, M. Hexavalent chromium and total chromium removal from polyvinylchloride (PVC) polymers. *U.S. Patent 8,415,452*, April 9, **2013**.

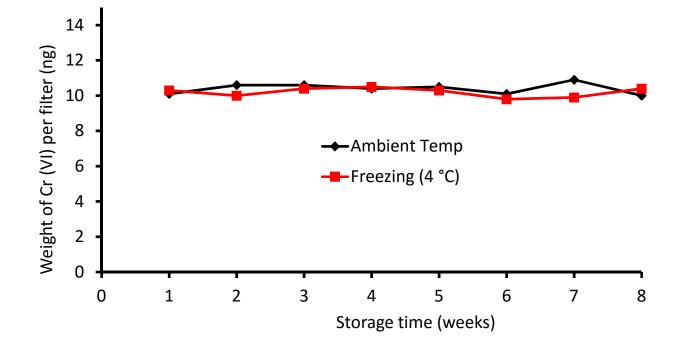
BIGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

Spiking Cr(VI) and Cr(III) onto Treated Filters

Dry filters and package under Nitrogen

Filter being spiked with Cr solution

Filters packaged and ready for storage


HIGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

IC-UV Vis for Cr(VI) Determination

Extract Cr(VI) using a Na₂CO₃/NaHCO₃ solution

Analyze by IC using the following conditions: Instrument: Thermo Scientific Dionex 3000 System Guard Column: Dionex IonPac AG7 Guard 2x50 mm Analytical Column: Dionex IonPac AS7 2x250 mm <u>Eluent</u>: 250 mM (NH₄)₂SO₄ + 100 mM NH₄OH *Eluent flow:* 0.36 mL/min; Injection vol: 1000 μL Temperature: 30 °C; Backpressure 1700-2000 psi Post Column Reagent: 2 mM diphenylcarbazide in 10% methanol and $1 \text{ N H}_2 \text{SO}_4$ Detection: UV Visible 540 nm Run time: 10 min

Stability of Cr(VI) on PVC Filters

- Note: 10.0 ng Cr(VI) was spiked on each filter
- Cr(VI) stable for at least 8 weeks at both storage temperatures
- Samples were analyzed by IC-UV

IIGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

¹Isotope Dilution Mass Spectrometry (IDMS)

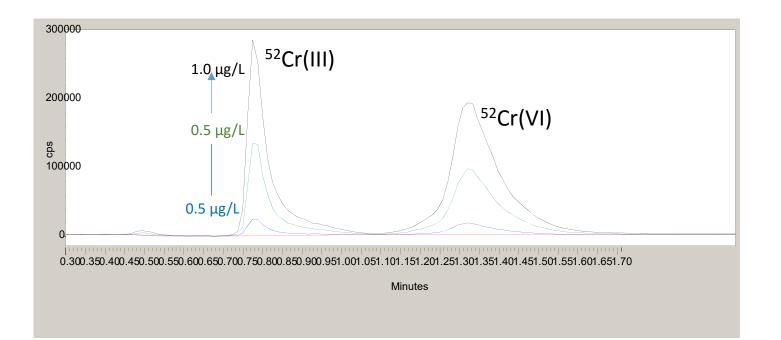
- Used to determine total concentration of Cr species in sample
- A known amount of enriched isotope ⁵³Cr(VI) or ⁵⁰Cr(III) is spiked into the sample and allowed to equilibrate
- Sample analyzed by ICP-MS

IGH-PURI

 Unaffected by partial loss of analyte after equilibration of sample and spike

¹US Environmental Protection Agency, Method 6800 Update V, *Elemmental and molecular speciated isotope dilution mass spectrometry*, US Government Printing Office, Washington, DC, **2015**

IDMS Results


Filter ID	Description	Cr-total (µg per filter)	Total Cr found (μg per filter) ^a
1600633	MCE filter, Blank	0	0.042±0.008
1600620	MCE filter, ^{nat} Cr(III)	0.1	0.14±0.05
1600622	MCE filter, ^{nat} Cr(VI)	0.1	0.12±0.01
1600623	MCE filter, ^{nat} Cr(VI)+ ^{nat} Cr(III)	0.2	0.215±0.006

^an=4, 95% confidence interval

• Consistent recoveries.

• Filters still contained residual Cr that was probably not removed during the cleaning of filters.

IC-ICPMS: Preliminary Results

<u>Dionex ICS 3000</u> IC Column: Dionex IonPac AG7 Mobile Phase: 0.2 mM HNO₃ Injection volume: 125 μL <u>Perkin Elmer NexIon 350D</u> DRC Gas flow: 0.7 ml/min NH₃

HIGH-PURITY STANDARDS Order online at www.highpuritystandards.com or call toll free 866-767-4771

Outline

- Introduction
- Objectives
- Experimental Design
- Results

Conclusions

- Filters, especially PVC-based ones, are contaminated with Cr, thus they require cleaning before use
- Cr(VI) remained stable for at least 8 weeks on PVC filter media under both ambient and refrigeration temperature conditions.
- IDMS was successfully applied to determine total chromium spiked on MCE filters.

Future Research

- Finish optimization of IC-ICPMS analysis
- Apply Speciated Isotope Dilution MS to study the stability of Cr(VI) on a variety of filter media.
- Develop a Certified Reference Material for trace levels of Cr(VI) on filter media

Acknowledgments

Applied Isotope Technologies Company

H. M. Skip Kingston Matt Pamuku Jenny Crawford

USAF School of Aerospace Medicine

Mitch Rubenstein

<u>PerkinElmer, Inc.</u> Erica Cahoon Daniel Jones

<u>High-Purity Standards</u> Zhen Xu

> Kim Phuong-Tran Emily Dupre Jessica Orak Eden Couch

Conclusions

- Filters require cleaning before use to remove residual Cr
- Cr(VI) remained stable for at least 8 weeks on PVC filter media under both ambient and refrigeration temperature conditions.
- IDMS was successfully used to determine total chromium spiked on MCE filters.